Using a majorization technique that identifies the maximal and minimal vectors of a variety of subsets of R^n, we find upper and lower bounds for the Kirchhoff index K(G) of an arbitrary simple connected graph G that improve those existing in the literature.

Torriero, A., Bianchi, M., Cornaro, A., Palacios, J. L., Bounds for the Kirchhoff index via majorization techniques, <<JOURNAL OF MATHEMATICAL CHEMISTRY>>, 2013; 2013 (2): 569-587. [doi:10.1007/s10910-012-0103-x] [http://hdl.handle.net/10807/37789]

Bounds for the Kirchhoff index via majorization techniques

Torriero, Anna;Bianchi, Monica;Cornaro, Alessandra;
2013

Abstract

Using a majorization technique that identifies the maximal and minimal vectors of a variety of subsets of R^n, we find upper and lower bounds for the Kirchhoff index K(G) of an arbitrary simple connected graph G that improve those existing in the literature.
2013
Inglese
url: 10807/13895
Torriero, A., Bianchi, M., Cornaro, A., Palacios, J. L., Bounds for the Kirchhoff index via majorization techniques, <<JOURNAL OF MATHEMATICAL CHEMISTRY>>, 2013; 2013 (2): 569-587. [doi:10.1007/s10910-012-0103-x] [http://hdl.handle.net/10807/37789]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/37789
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 55
  • ???jsp.display-item.citation.isi??? 55
social impact