The aim of the present survey mainly consists in illustrating some recently emerged differential and symplectic geometric aspects of the ordinary and higher order linking numbers of knot theory, within the modern geometrical and topological framework, constantly referring to their multifaceted physical origins and interpretations.

Spera, M., A survey on the differential and symplectic geometry of linking numbers, <<MILAN JOURNAL OF MATHEMATICS>>, N/A; 74 (N/A): 139-197. [doi:10.1007/s00032-006-0061-5] [http://hdl.handle.net/10807/35976]

A survey on the differential and symplectic geometry of linking numbers

Spera, Mauro
2006

Abstract

The aim of the present survey mainly consists in illustrating some recently emerged differential and symplectic geometric aspects of the ordinary and higher order linking numbers of knot theory, within the modern geometrical and topological framework, constantly referring to their multifaceted physical origins and interpretations.
Campo DC Valore Lingua
dc.authority.academicField2000 Settore MAT/03 - GEOMETRIA it
dc.authority.academicField2000 Settore MAT/07 - FISICA MATEMATICA it
dc.authority.ancejournal MILAN JOURNAL OF MATHEMATICS en
dc.authority.erc2011 Geometry it
dc.authority.erc2011 Mathematical physics it
dc.authority.people Spera, Mauro it
dc.cilea.flagannuariono 12806 -
dc.cilea.flagppdsi 12806 -
dc.cilea.standby Notification sent at Sun Oct 21 17:03:57 CEST 2012, release date is 2012-10-24 -
dc.collection.id.s e309db74-00b3-0599-e053-3705fe0a55db *
dc.collection.name Articolo in rivista, Nota a sentenza *
dc.contributor.appartenenza BRESCIA - Dipartimento di Matematica e fisica 'Niccolò Tartaglia' *
dc.contributor.appartenenza.mi 27408 *
dc.contributor.area Area 01 - Scienze matematiche e informatiche *
dc.contributor.faculty FACOLTA' DI SCIENZE MATEMATICHE, FISICHE E NATURALI *
dc.date.accessioned 2012/10/24 02:00:39 -
dc.date.available 2012/10/24 02:00:39 -
dc.date.issued 2006 -
dc.description.abstracteng The aim of the present survey mainly consists in illustrating some recently emerged differential and symplectic geometric aspects of the ordinary and higher order linking numbers of knot theory, within the modern geometrical and topological framework, constantly referring to their multifaceted physical origins and interpretations. -
dc.description.allpeople Spera, Mauro -
dc.description.allpeopleoriginal Spera, Mauro it
dc.description.fulltext none en
dc.description.fulltextoriginal none en
dc.description.languageisokeywords eng it
dc.description.numberofauthors 1 -
dc.identifier.citation Spera, M., A survey on the differential and symplectic geometry of linking numbers, <>, N/A; 74 (N/A): 139-197. [doi:10.1007/s00032-006-0061-5] [http://hdl.handle.net/10807/35976] it
dc.identifier.doi 10.1007/s00032-006-0061-5 it
dc.identifier.scopus 2-s2.0-33751540992 -
dc.identifier.uri http://hdl.handle.net/10807/35976 -
dc.language.iso eng it
dc.relation.firstpage 139 it
dc.relation.format a stampa it
dc.relation.issue N/A it
dc.relation.issueyear N/A it
dc.relation.lastpage 197 it
dc.relation.numberofpages 59 it
dc.relation.volume 74 it
dc.subject.keywords Symplectic geometry, knot theory, topological methods in hydrodynamics it
dc.subject.singlekeyword Symplectic geometry *
dc.subject.singlekeyword knot theory *
dc.subject.singlekeyword topological methods in hydrodynamics *
dc.title A survey on the differential and symplectic geometry of linking numbers it
dc.type art_per_29 -
dc.type.contribution Articolo su rivista scientifica / specializzata it
dc.type.driver info:eu-repo/semantics/article -
dc.type.full 03. Contributo in rivista::Articolo in rivista, Nota a sentenza it
dc.type.genius Articolo su rivista presente in Web of Knowledge -
dc.type.miur 262 en
dc.type.miurarticle Articolo in rivista it
dc.type.referee Esperti anonimi it
dc.type.research AREA01 - SCIENZE MATEMATICHE E INFORMATICHE -
iris.orcid.lastModifiedDate 2023/06/21 16:54:20 *
iris.orcid.lastModifiedMillisecond 1687359260844 *
iris.scopus.extIssued 2006 -
iris.scopus.extTitle A survey on the differential and symplectic geometry of linking numbers -
iris.sitodocente.maxattempts 1 -
iris.unpaywall.doi 10.1007/s00032-006-0061-5 *
iris.unpaywall.isoa false *
iris.unpaywall.journalisindoaj false *
iris.unpaywall.metadataCallLastModified 06/12/2025 02:52:35 -
iris.unpaywall.metadataCallLastModifiedMillisecond 1764985955049 -
iris.unpaywall.oastatus closed *
scopus.authority.ancejournal MILAN JOURNAL OF MATHEMATICS###1424-9286 *
scopus.category 2600 *
scopus.contributor.affiliation Università di Padova -
scopus.contributor.afid 60000481 -
scopus.contributor.auid 6701835260 -
scopus.contributor.country Italy -
scopus.contributor.dptid 103061503 -
scopus.contributor.name Mauro -
scopus.contributor.subaffiliation Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate; -
scopus.contributor.surname Spera -
scopus.date.issued 2006 *
scopus.description.abstracteng The aim of the present survey mainly consists in illustrating some recently emerged differential and symplectic geometric aspects of the ordinary and higher order linking numbers of knot theory, within the modern geometrical and topological framework, constantly referring to their multifaceted physical origins and interpretations. © Birkhäuser Verlag, Basel 2006. *
scopus.description.allpeopleoriginal Spera M. *
scopus.differences scopus.subject.keywords *
scopus.differences scopus.description.allpeopleoriginal *
scopus.differences scopus.description.abstracteng *
scopus.differences scopus.relation.issue *
scopus.document.type ar *
scopus.document.types ar *
scopus.identifier.doi 10.1007/s00032-006-0061-5 *
scopus.identifier.eissn 1424-9294 *
scopus.identifier.pui 44837420 *
scopus.identifier.scopus 2-s2.0-33751540992 *
scopus.journal.sourceid 100147303 *
scopus.language.iso eng *
scopus.relation.firstpage 139 *
scopus.relation.issue 1 *
scopus.relation.lastpage 197 *
scopus.relation.volume 74 *
scopus.subject.keywords Artin's braid groups; Chen iterated integrals; Chern-Simons action; Geometric and topological methods of hydrodynamics; Geometric quantization; Magnetic relaxation; Maslov theory; Ordinary and higher order linking numbers; *
scopus.title A survey on the differential and symplectic geometry of linking numbers *
scopus.titleeng A survey on the differential and symplectic geometry of linking numbers *
Appare nelle tipologie: Articolo in rivista, Nota a sentenza
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/35976
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? ND
social impact