In this paper, a rigorous construction of the S^1 -equivariant Dirac operator (i.e., Dirac– Ramond operator) on the space of (mean zero) loops in R^d is given and its equivariant L^2 - index computed. Essential use is made of infinite tensor product representations of the canonical anticommutation relations algebra.

Spera, M., Wurzbacher, T., The Dirac-Ramond operator on loops in flat space, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, N/A; 197 (N/A): 110-139. [doi:10.1016/S0022-1236(02)00178-7] [http://hdl.handle.net/10807/35686]

The Dirac-Ramond operator on loops in flat space

Spera, Mauro;
2003

Abstract

In this paper, a rigorous construction of the S^1 -equivariant Dirac operator (i.e., Dirac– Ramond operator) on the space of (mean zero) loops in R^d is given and its equivariant L^2 - index computed. Essential use is made of infinite tensor product representations of the canonical anticommutation relations algebra.
2003
Inglese
Giudizio CIVR 2003 (2006) (prodotto 008850): eccellente
Spera, M., Wurzbacher, T., The Dirac-Ramond operator on loops in flat space, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, N/A; 197 (N/A): 110-139. [doi:10.1016/S0022-1236(02)00178-7] [http://hdl.handle.net/10807/35686]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/35686
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact