In this paper a geometrical description is given of the theory of quantum vortices first developed by M.Rasetti and T.Regge, relying on the symplectic techniques introduced by J.Marsden and A.Weinstein and of the Kirillov-Kostant-Souriau geometric quantization prescription. The RR current algebra is intepreted as the natural hamiltonian algebra associated to a certain coadjoint orbit of the group of volume preserving diffeomorphisms of R^3. and the Feynman-Onsager relation is traced back to the integrality of the orbit.
Penna, V., Spera, M., A geometric approach to quantum vortices, <<JOURNAL OF MATHEMATICAL PHYSICS>>, 1989; 30 (12): 2778-2784 [http://hdl.handle.net/10807/35632]
A geometric approach to quantum vortices
Spera, Mauro
1989
Abstract
In this paper a geometrical description is given of the theory of quantum vortices first developed by M.Rasetti and T.Regge, relying on the symplectic techniques introduced by J.Marsden and A.Weinstein and of the Kirillov-Kostant-Souriau geometric quantization prescription. The RR current algebra is intepreted as the natural hamiltonian algebra associated to a certain coadjoint orbit of the group of volume preserving diffeomorphisms of R^3. and the Feynman-Onsager relation is traced back to the integrality of the orbit.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.