We investigated the prognostic utility a novel deep learning algorithm for quantifying severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF) enrolled in the Australian IPF Registry (AIPFR). In IPF, automated quantification of Total airway volume predicts mortality independently of total fibrosis extent on HRCT and can be used to identify patients at risk of progression at 12 months.

Felder, F., Nan, Y., Yang, G., Mackintosh, J., Calandriello, L., Silva, M., Glaspole, I., Goh, N., Cooper, W., Grainge, C., Hopkins, P., Moodley, Y., Vidya, N., Reynolds, P., Wells, A., Corte, T., Walsh, S., (Abstract) Deep learning-based quantification of traction bronchiectasis severity for predicting outcome in idiopathic pulmonary fibrosis, <<EUROPEAN RESPIRATORY JOURNAL>>, 2023; 62 (Supplement 67): 1-1. [doi:10.1183/13993003.congress-2023.OA4853] [https://hdl.handle.net/10807/324468]

Deep learning-based quantification of traction bronchiectasis severity for predicting outcome in idiopathic pulmonary fibrosis

Calandriello, Lucio;Silva, Matteo;
2023

Abstract

We investigated the prognostic utility a novel deep learning algorithm for quantifying severity of traction bronchiectasis in patients with idiopathic pulmonary fibrosis (IPF) enrolled in the Australian IPF Registry (AIPFR). In IPF, automated quantification of Total airway volume predicts mortality independently of total fibrosis extent on HRCT and can be used to identify patients at risk of progression at 12 months.
2023
Inglese
Felder, F., Nan, Y., Yang, G., Mackintosh, J., Calandriello, L., Silva, M., Glaspole, I., Goh, N., Cooper, W., Grainge, C., Hopkins, P., Moodley, Y., Vidya, N., Reynolds, P., Wells, A., Corte, T., Walsh, S., (Abstract) Deep learning-based quantification of traction bronchiectasis severity for predicting outcome in idiopathic pulmonary fibrosis, <<EUROPEAN RESPIRATORY JOURNAL>>, 2023; 62 (Supplement 67): 1-1. [doi:10.1183/13993003.congress-2023.OA4853] [https://hdl.handle.net/10807/324468]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/324468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 0
social impact