We investigated the prognostic utility of a deep learning algorithm for predicting risk of progression in patients with idiopathic pulmonary fibrosis (IPF). Progression was defined as an FVC decline of 10% at 12 months, death, or transplantation. Deep learning may be used to identify suspected IPF patients at risk of progression at 12 months

Fang, Y., Felder, F., Yang, G., Mackintosh, J., Calandriello, L., Silva, M., Cooper, W., Glaspole, I., Goh, N., Grainge, C., Hopkins, P., Moodley, Y., Vidya, N., Reynolds, P., Wells, A., Corte, T., Walsh, S., A deep learning algorithm for predicting disease progression in idiopathic pulmonary fibrosis, Abstract de <<ERS (European Respiratory Society) congress 2023>>, (Milano, 09-12 September 2023 ), <<EUROPEAN RESPIRATORY JOURNAL>>, 2023; 62 (Supplement 67): N/A-N/A. 10.1183/13993003.congress-2023.OA4852 [https://hdl.handle.net/10807/324336]

A deep learning algorithm for predicting disease progression in idiopathic pulmonary fibrosis

Calandriello, Lucio;Silva, Matteo;
2023

Abstract

We investigated the prognostic utility of a deep learning algorithm for predicting risk of progression in patients with idiopathic pulmonary fibrosis (IPF). Progression was defined as an FVC decline of 10% at 12 months, death, or transplantation. Deep learning may be used to identify suspected IPF patients at risk of progression at 12 months
2023
Inglese
Fang, Y., Felder, F., Yang, G., Mackintosh, J., Calandriello, L., Silva, M., Cooper, W., Glaspole, I., Goh, N., Grainge, C., Hopkins, P., Moodley, Y., Vidya, N., Reynolds, P., Wells, A., Corte, T., Walsh, S., A deep learning algorithm for predicting disease progression in idiopathic pulmonary fibrosis, Abstract de <<ERS (European Respiratory Society) congress 2023>>, (Milano, 09-12 September 2023 ), <<EUROPEAN RESPIRATORY JOURNAL>>, 2023; 62 (Supplement 67): N/A-N/A. 10.1183/13993003.congress-2023.OA4852 [https://hdl.handle.net/10807/324336]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/324336
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? 1
social impact