We construct a weakly compact convex subset of & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{2}$$\end{document} with nonempty interior that has an isolated maximal element, with respect to the lattice order & ell;+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{+}<^>{2}$$\end{document}. Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.
Daniilidis, A., De Bernardi, C. A., Miglierina, E., ABB Theorems: Results and Limitations in Infinite Dimensions, <<JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS>>, 2025; 207 (2): 1-13. [doi:10.1007/s10957-025-02797-z] [https://hdl.handle.net/10807/321223]
ABB Theorems: Results and Limitations in Infinite Dimensions
De Bernardi, Carlo Alberto;Miglierina, Enrico
2025
Abstract
We construct a weakly compact convex subset of & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{2}$$\end{document} with nonempty interior that has an isolated maximal element, with respect to the lattice order & ell;+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{+}<^>{2}$$\end{document}. Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.| File | Dimensione | Formato | |
|---|---|---|---|
|
unpaywall-bitstream-1078617839.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
440.39 kB
Formato
Adobe PDF
|
440.39 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



