We construct a weakly compact convex subset of & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{2}$$\end{document} with nonempty interior that has an isolated maximal element, with respect to the lattice order & ell;+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{+}<^>{2}$$\end{document}. Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.

Daniilidis, A., De Bernardi, C. A., Miglierina, E., ABB Theorems: Results and Limitations in Infinite Dimensions, <<JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS>>, 2025; 207 (2): 1-13. [doi:10.1007/s10957-025-02797-z] [https://hdl.handle.net/10807/321223]

ABB Theorems: Results and Limitations in Infinite Dimensions

De Bernardi, Carlo Alberto;Miglierina, Enrico
2025

Abstract

We construct a weakly compact convex subset of & ell;2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell <^>{2}$$\end{document} with nonempty interior that has an isolated maximal element, with respect to the lattice order & ell;+2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _{+}<^>{2}$$\end{document}. Moreover, the maximal point cannot be supported by any strictly positive functional, which shows that the Arrow-Barankin-Blackwell theorem fails. This example discloses the pertinence of the assumption that the cone has a bounded base for the validity of the result in infinite dimensions. Under this latter assumption, the equivalence of the notions of strict maximality and maximality is established.
2025
Inglese
Daniilidis, A., De Bernardi, C. A., Miglierina, E., ABB Theorems: Results and Limitations in Infinite Dimensions, <<JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS>>, 2025; 207 (2): 1-13. [doi:10.1007/s10957-025-02797-z] [https://hdl.handle.net/10807/321223]
File in questo prodotto:
File Dimensione Formato  
unpaywall-bitstream-1078617839.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 440.39 kB
Formato Adobe PDF
440.39 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/321223
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact