Background: Different lateral and postero-lateral cranial approaches to the petroclival region and to the mid-upper brain stem have been described so far, some of which require extensive osseous demolition and possible damage of neurovascular structures. Neuronavigational systems are now extensively available for preoperative planning and intraoperative navigation to assist the surgeons in choosing the optimally invasive approach for each pathology. Herein, we describe a detailed navigation-augmented morphometric analysis to bring insight into the usefulness of an anterior petrosectomy (AP) to handle lesions in the petroclival region. Methods: Eight cadaveric, silicone injected heads were used. A total of 14 approaches (AP, n = 8; retrosigmoid, RS, n = 6) using a standard microsurgical dissection technique were performed. All specimens had preoperative CT and MRI scans, as well as a post-dissection CT. The neuronavigational system was used for distance measurements, craniotomy sizes and surgical corridor volumes, for each approach. Results: The distance from the skull surface to the petrous apex was significantly shorter in the AP approach when compared with the RS (46.0 ± 1.9 mm versus 71.3 ± 1.8 mm, respectively, p < 0.001). Although the craniotomy size was not different, the volume of the surgical corridor was significantly larger with the AP approach (21.31 ± 1.91 cm3 vs. 13.39 ± 1.8 cm3). The AP approach increased the length of the basilar artery exposure from 6.9 ± 1.5 mm (obtained with a standard subtemporal approach) to 22.1 ± 1.7 mm (p < 0.0001). Conclusions: The surgical corridor to the petroclival region achieved by virtue of an AP was significantly larger and featured shorter working distances, resulting in a higher degree of surgical freedom. Although significant individual anatomical variations of fundamental neurovascular and bony structures were found, these difficulties were overcome by careful pre- and intraoperative use of neuronavigation.
Signoretti, S., Signorelli, F., Pesce, A., Delitala, A., Visocchi, M., Anterior Petrosectomy vs. Retrosigmoid Approach—Surgical Anatomy and Navigation-Augmented Morphometric Analysis: A Comparative Study in Cadaveric Laboratory Setting, <<BRAIN SCIENCES>>, 2025; 15 (2): N/A-N/A. [doi:10.3390/brainsci15020104] [https://hdl.handle.net/10807/314564]
Anterior Petrosectomy vs. Retrosigmoid Approach—Surgical Anatomy and Navigation-Augmented Morphometric Analysis: A Comparative Study in Cadaveric Laboratory Setting
Signorelli, Francesco;Pesce, Antonio;Visocchi, Massimiliano
2025
Abstract
Background: Different lateral and postero-lateral cranial approaches to the petroclival region and to the mid-upper brain stem have been described so far, some of which require extensive osseous demolition and possible damage of neurovascular structures. Neuronavigational systems are now extensively available for preoperative planning and intraoperative navigation to assist the surgeons in choosing the optimally invasive approach for each pathology. Herein, we describe a detailed navigation-augmented morphometric analysis to bring insight into the usefulness of an anterior petrosectomy (AP) to handle lesions in the petroclival region. Methods: Eight cadaveric, silicone injected heads were used. A total of 14 approaches (AP, n = 8; retrosigmoid, RS, n = 6) using a standard microsurgical dissection technique were performed. All specimens had preoperative CT and MRI scans, as well as a post-dissection CT. The neuronavigational system was used for distance measurements, craniotomy sizes and surgical corridor volumes, for each approach. Results: The distance from the skull surface to the petrous apex was significantly shorter in the AP approach when compared with the RS (46.0 ± 1.9 mm versus 71.3 ± 1.8 mm, respectively, p < 0.001). Although the craniotomy size was not different, the volume of the surgical corridor was significantly larger with the AP approach (21.31 ± 1.91 cm3 vs. 13.39 ± 1.8 cm3). The AP approach increased the length of the basilar artery exposure from 6.9 ± 1.5 mm (obtained with a standard subtemporal approach) to 22.1 ± 1.7 mm (p < 0.0001). Conclusions: The surgical corridor to the petroclival region achieved by virtue of an AP was significantly larger and featured shorter working distances, resulting in a higher degree of surgical freedom. Although significant individual anatomical variations of fundamental neurovascular and bony structures were found, these difficulties were overcome by careful pre- and intraoperative use of neuronavigation.| File | Dimensione | Formato | |
|---|---|---|---|
|
brainsci-petrosectomy.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
621.3 kB
Formato
Adobe PDF
|
621.3 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.



