We consider a continuous function defined on a metric space with values in a Banach space endowed with an order cone. In this setting, we provide an extension of min-max techniques, such as the Mountain pass theorem and Ljusternik-Schnirelman theory, without assuming the order cone to have nonempty interior.

Degiovanni, M., Lucchetti, R., Ribarska, N., Critical point theory for vector valued functions, <<JOURNAL OF CONVEX ANALYSIS>>, 2002; (9): 415-428 [https://hdl.handle.net/10807/312913]

Critical point theory for vector valued functions

Degiovanni, Marco
Primo
Conceptualization
;
Lucchetti, Roberto
Secondo
Conceptualization
;
2002

Abstract

We consider a continuous function defined on a metric space with values in a Banach space endowed with an order cone. In this setting, we provide an extension of min-max techniques, such as the Mountain pass theorem and Ljusternik-Schnirelman theory, without assuming the order cone to have nonempty interior.
2002
Inglese
Degiovanni, M., Lucchetti, R., Ribarska, N., Critical point theory for vector valued functions, <<JOURNAL OF CONVEX ANALYSIS>>, 2002; (9): 415-428 [https://hdl.handle.net/10807/312913]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/312913
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact