Increasing evidence suggests the involvement of oxidative stress in noise-induced hearing loss. The present study analysed, in an animal experimental model, the time course of the pathogenic mechanisms of noise-induced cochlear damage and the efficacy of the antioxidant drug N-acetylcysteine in reducing noise ototoxicity. Animals were divided into two groups, exposed to noise one treated with N-acetylcysteine for 3 days and one (the control group) with saline. Acoustic trauma was induced by a continuous pure tone of 6 kHz, at 120 dB SPL for 30 minutes. Electrocochleographic recordings were made from an implanted round window electrode and the compound action potentials were measured daily at 2-16 kHz for 7 days. Morphological changes were analysed by scanning electron microscopy. The acoustic threshold measured 1 hour after acoustic trauma was elevated in the control group to 70-90 dB in the higher frequencies of the compound action potential audiogram, with a maximum threshold elevation ranging between 12 and 16 kHz. During the first 24 h, following acoustic trauma, there was a partial recovery of compound action potential thresholds of about 20 dB to reach a final threshold elevation of about 50-70 dB; there was no further improvement over the remaining experimental week. Animals treated with N-acetylcysteine showed a similar temporary threshold shift but a clear improvement in the recovery of compound action potential thresholds, with significantly reduced permanent threshold shift and hair cell loss. These data suggest that N-acetylcysteine is able to attenuate the toxic effect of acoustic trauma and could represent an interesting molecule for preventing inner ear injuries.

Fetoni, A. R., Ralli, M., Sergi, B., Parrilla, C., Troiani, D., Paludetti, G., Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs, <<ACTA OTORHINOLARYNGOLOGICA ITALICA>>, 2009; 29 (Marzo): 70-75 [http://hdl.handle.net/10807/31258]

Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs

Fetoni, Anna Rita;Ralli, Massimo;Sergi, Bruno;Parrilla, Claudio;Troiani, Diana;Paludetti, Gaetano
2009

Abstract

Increasing evidence suggests the involvement of oxidative stress in noise-induced hearing loss. The present study analysed, in an animal experimental model, the time course of the pathogenic mechanisms of noise-induced cochlear damage and the efficacy of the antioxidant drug N-acetylcysteine in reducing noise ototoxicity. Animals were divided into two groups, exposed to noise one treated with N-acetylcysteine for 3 days and one (the control group) with saline. Acoustic trauma was induced by a continuous pure tone of 6 kHz, at 120 dB SPL for 30 minutes. Electrocochleographic recordings were made from an implanted round window electrode and the compound action potentials were measured daily at 2-16 kHz for 7 days. Morphological changes were analysed by scanning electron microscopy. The acoustic threshold measured 1 hour after acoustic trauma was elevated in the control group to 70-90 dB in the higher frequencies of the compound action potential audiogram, with a maximum threshold elevation ranging between 12 and 16 kHz. During the first 24 h, following acoustic trauma, there was a partial recovery of compound action potential thresholds of about 20 dB to reach a final threshold elevation of about 50-70 dB; there was no further improvement over the remaining experimental week. Animals treated with N-acetylcysteine showed a similar temporary threshold shift but a clear improvement in the recovery of compound action potential thresholds, with significantly reduced permanent threshold shift and hair cell loss. These data suggest that N-acetylcysteine is able to attenuate the toxic effect of acoustic trauma and could represent an interesting molecule for preventing inner ear injuries.
2009
Inglese
Fetoni, A. R., Ralli, M., Sergi, B., Parrilla, C., Troiani, D., Paludetti, G., Protective effects of N-acetylcysteine on noise-induced hearing loss in guinea pigs, <<ACTA OTORHINOLARYNGOLOGICA ITALICA>>, 2009; 29 (Marzo): 70-75 [http://hdl.handle.net/10807/31258]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/31258
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact