In this article, we make significant progress on a conjecture proposed by Dan Archdeacon on the existence of integer Heffter arrays H(m, n; s, k) whenever the necessary conditions hold, that is, 3 ⩽ s ⩽n, 3 ⩽ k ⩽m, ms = nk and nk ≡ 0, 3 (mod 4). By constructing integer Heffter array sets, we prove the conjecture in the affirmative whenever k ⩾ s gcd( s, k ) is odd and s ≠ 3, 5, 6, 10.

Pellegrini, M. A., Traetta, T., Toward a Solution of Archdeacon's Conjecture on Integer Heffter Arrays, <<JOURNAL OF COMBINATORIAL DESIGNS>>, 2025; (N/A): N/A-N/A. [doi:10.1002/jcd.21983] [https://hdl.handle.net/10807/312216]

Toward a Solution of Archdeacon's Conjecture on Integer Heffter Arrays

Pellegrini, Marco Antonio
;
2025

Abstract

In this article, we make significant progress on a conjecture proposed by Dan Archdeacon on the existence of integer Heffter arrays H(m, n; s, k) whenever the necessary conditions hold, that is, 3 ⩽ s ⩽n, 3 ⩽ k ⩽m, ms = nk and nk ≡ 0, 3 (mod 4). By constructing integer Heffter array sets, we prove the conjecture in the affirmative whenever k ⩾ s gcd( s, k ) is odd and s ≠ 3, 5, 6, 10.
2025
Inglese
Pellegrini, M. A., Traetta, T., Toward a Solution of Archdeacon's Conjecture on Integer Heffter Arrays, <<JOURNAL OF COMBINATORIAL DESIGNS>>, 2025; (N/A): N/A-N/A. [doi:10.1002/jcd.21983] [https://hdl.handle.net/10807/312216]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/312216
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact