We investigate the existence and concentration of normalized solutions for a p-Laplacian problem with logarithmic nonlinearity of type {−εpΔpu+V(x)|u|p−2u=λ|u|p−2u+|u|p−2ulog⁡|u|pinRN,∫RN|u|pdx=apεN, where a,ε>0, λ∈R is known as the Lagrange multiplier, Δp⋅=div(|∇⋅|p−2∇⋅) denotes the usual p-Laplacian operator with 2≤p

Shen, L., Squassina, M., Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity, <<JOURNAL OF DIFFERENTIAL EQUATIONS>>, 2025; 421 (N/A): 1-49. [doi:10.1016/j.jde.2024.11.049] [https://hdl.handle.net/10807/311879]

Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity

Squassina, Marco
2025

Abstract

We investigate the existence and concentration of normalized solutions for a p-Laplacian problem with logarithmic nonlinearity of type {−εpΔpu+V(x)|u|p−2u=λ|u|p−2u+|u|p−2ulog⁡|u|pinRN,∫RN|u|pdx=apεN, where a,ε>0, λ∈R is known as the Lagrange multiplier, Δp⋅=div(|∇⋅|p−2∇⋅) denotes the usual p-Laplacian operator with 2≤p
2025
Inglese
Shen, L., Squassina, M., Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity, <<JOURNAL OF DIFFERENTIAL EQUATIONS>>, 2025; 421 (N/A): 1-49. [doi:10.1016/j.jde.2024.11.049] [https://hdl.handle.net/10807/311879]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/311879
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact