Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.

Mastrantoni, L., Garufi, G., Giordano, G., Maliziola, N., Di Monte, E., Arcuri, G., Frescura, V., Rotondi, A., Orlandi, A., Carbognin, L., Palazzo, A., Miglietta, F., Pontolillo, L., Fabi, A., Gerratana, L., Pannunzio, S., Paris, I., Pilotto, S., Marazzi, F., De Franco, A., Franceschini, G., Dieci, M. V., Mazzeo, R., Puglisi, F., Guarneri, V., Milella, M., Scambia, G., Giannarelli, D., Tortora, G., Bria, E., Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy, <<NPJ BREAST CANCER>>, 2025; 11 (1): N/A-N/A. [doi:10.1038/s41523-025-00727-w] [https://hdl.handle.net/10807/311559]

Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy

Mastrantoni, Luca;Garufi, Giovanna;Giordano, Giulia;Maliziola, Noemi;Di Monte, Elena;Arcuri, Giorgia;Frescura, Valentina;Rotondi, Angelachiara;Orlandi, Armando;Palazzo, Antonella;Pontolillo, Letizia;Paris, Ida;Marazzi, Fabio;De Franco, Antonio;Franceschini, Gianluca;Scambia, Giovanni;Giannarelli, Diana;Tortora, Giampaolo;Bria, Emilio
2025

Abstract

Hormone receptor-positive/HER2-negative breast cancer (BC) is the most common subtype of BC and typically occurs as an early, operable disease. In patients receiving neoadjuvant chemotherapy (NACT), pathological complete response (pCR) is rare and multiple efforts have been made to predict disease recurrence. We developed a framework to predict pCR using clinicopathological characteristics widely available at diagnosis. The machine learning (ML) models were trained to predict pCR (n = 463), evaluated in an internal validation cohort (n = 109) and validated in an external validation cohort (n = 151). The best model was an Elastic Net, which achieved an area under the curve (AUC) of respectively 0.86 and 0.81. Our results highlight how simpler models using few input variables can be as valuable as more complex ML architectures. Our model is freely available and can be used to enhance the stratification of BC patients receiving NACT, providing a framework for the development of risk-adapted clinical trials.
2025
Inglese
Mastrantoni, L., Garufi, G., Giordano, G., Maliziola, N., Di Monte, E., Arcuri, G., Frescura, V., Rotondi, A., Orlandi, A., Carbognin, L., Palazzo, A., Miglietta, F., Pontolillo, L., Fabi, A., Gerratana, L., Pannunzio, S., Paris, I., Pilotto, S., Marazzi, F., De Franco, A., Franceschini, G., Dieci, M. V., Mazzeo, R., Puglisi, F., Guarneri, V., Milella, M., Scambia, G., Giannarelli, D., Tortora, G., Bria, E., Accessible model predicts response in hormone receptor positive HER2 negative breast cancer receiving neoadjuvant chemotherapy, <<NPJ BREAST CANCER>>, 2025; 11 (1): N/A-N/A. [doi:10.1038/s41523-025-00727-w] [https://hdl.handle.net/10807/311559]
File in questo prodotto:
File Dimensione Formato  
s41523-025-00727-w.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.1 MB
Formato Adobe PDF
3.1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/311559
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 0
social impact