Let $\Delta_{\G}$ be a sublaplacian on a Carnot group, and let $\mu$ be a local measure on the open set $\Omega \subset \G$. If $u\in L^1_{loc}(\Omega)$ is such that $$-\Delta_{\G} u= \mu, \; u\ge 0 \quad \hbox{on} \ \Omega,$$ then $\mu_c\ge 0$, where $\mu_c$ is the concentrate component of $\mu$ with respect to the $\G$-capacity. This extends to the Carnot group setting a result contained in \cite{DuPo04}.
D'Ambrosio, L., Gallo, M., A note on the inverse maximum principle on Carnot groups, <<RENDICONTI DELL'ISTITUTO DI MATEMATICA DELL'UNIVERSITÀ DI TRIESTE>>, 2025; 57 (3): 1-19. [doi:10.13137/2464-8728/37091] [https://hdl.handle.net/10807/310476]
A note on the inverse maximum principle on Carnot groups
Gallo, Marco
2025
Abstract
Let $\Delta_{\G}$ be a sublaplacian on a Carnot group, and let $\mu$ be a local measure on the open set $\Omega \subset \G$. If $u\in L^1_{loc}(\Omega)$ is such that $$-\Delta_{\G} u= \mu, \; u\ge 0 \quad \hbox{on} \ \Omega,$$ then $\mu_c\ge 0$, where $\mu_c$ is the concentrate component of $\mu$ with respect to the $\G$-capacity. This extends to the Carnot group setting a result contained in \cite{DuPo04}.File | Dimensione | Formato | |
---|---|---|---|
RIMUT_2025_3_DAmbrosio_DOI.pdf
accesso aperto
Descrizione: Electronic version
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
379.72 kB
Formato
Adobe PDF
|
379.72 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.