In a robust approach to model fitting for the cluster weighted model, many choices are to be made by the statistician: specifying the shape of the clusters in the explanatory variables, assuming (or not) equal variance for the errors in the re- gression lines, and setting hyper-parameter values for the robust estimation to be protected from outliers and contamination. The most delicate hyper-parameter to specify is perhaps the percentage of trimming, or the amount of data to be excluded from the estimate, to ensure reliable inference. In this work we introduce diagnos- tic tools to help the professional, or the scientist who needs to group the data, to make an educated choice about this hyper-parameter, after a first exploration of the resulting model space.
Nella stima robusta di un cluster weighted model, lo statistico deve fare molte scelte: specificare la forma dei cluster nelle variabili esplicative, assumere (o meno) varianza uguale per gli errori nelle linee di regressione e impostare i va- lori degli iper-parametri per la stima robusta, per evitare la distorsione generata da valori anomali e contaminazione. L’iper-parametro pi`u delicato da specificare `e la percentuale di trimming, ovvero la quantit`a di dati da escludere nella stima per garantirne l’affidabilit`a. In questo lavoro introduciamo specifici strumenti dia- gnostici per aiutare il professionista, o lo scienziato che ha bisogno di classificare i dati, a compiere una scelta ragionata a riguardo di tale iper-parametro, anche in base ad una prima esplorazione dello spazio delle soluzioni.
Cappozzo, A., Greselin, F., Monitoring tools for robust estimation of cluster weighted models = Strumenti di monitoring per la stima robusta del modelloCluster Weighted, Comunicazione, in Book of Short Papers : SIS 2021, (Pisa, 21-25 June 2021), Pearson, Pisa 2021: 1245-1250 [https://hdl.handle.net/10807/309190]
Monitoring tools for robust estimation of cluster weighted models = Strumenti di monitoring per la stima robusta del modello Cluster Weighted
Cappozzo, Andrea;
2021
Abstract
In a robust approach to model fitting for the cluster weighted model, many choices are to be made by the statistician: specifying the shape of the clusters in the explanatory variables, assuming (or not) equal variance for the errors in the re- gression lines, and setting hyper-parameter values for the robust estimation to be protected from outliers and contamination. The most delicate hyper-parameter to specify is perhaps the percentage of trimming, or the amount of data to be excluded from the estimate, to ensure reliable inference. In this work we introduce diagnos- tic tools to help the professional, or the scientist who needs to group the data, to make an educated choice about this hyper-parameter, after a first exploration of the resulting model space.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.