The retinal pigment epithelium (RPE) is a highly specialised monolayer epithelium subjected to constant oxidative stress, which, in the long term, favours the development of a complex pathological process that is the underlying cause of macular damage. Therefore, counteracting the overproduction of ROS is the best-researched approach to preserve the functional integrity of the RPE. S-Petasin, a secondary metabolite extracted from the plant Petasites hybridus, has numerous biological effects, which highlight its anti-inflammatory and antioxidative properties. The aim of our study is to investigate whether S-Petasin exerts cytoprotective effects by protecting the RPE from oxidative damage. The effects of pretreatment with S-Petasin were assessed by the determination of the cell viability, intracellular ROS levels, activation of the Nrf2 pathway and the resulting post-transcriptional antioxidant/antiapoptotic response. Our results show that S-Petasin pretreatment (1) reduces intracellular ROS levels, improving cell viability of RPE exposed to oxidative damage; (2) activates the Nrf2 signalling pathway, modulating the post-transcriptional response of its antioxidant chemical biomarkers; (3) reduces the Bax levels, and an increase in those of Bcl-2, with a concomitant downregulation of the Bax/Bc-2 ratio. Overall, our results provide the first evidence that S-Petasin is able to protect the RPE from oxidative damage.
Pizzoferrato, M., Lazzarino, G., Brancato, A., Tabolacci, E., Clementi, M. E., Tringali, G., Evidence for a Functional Link Between the Nrf2 Signalling Pathway and Cytoprotective Effect of S-Petasin in Human Retinal Pigment Epithelium Cells Exposed to Oxidative Stress, <<ANTIOXIDANTS>>, 2025; 14 (2): 180-193. [doi:10.3390/antiox14020180] [https://hdl.handle.net/10807/309036]
Evidence for a Functional Link Between the Nrf2 Signalling Pathway and Cytoprotective Effect of S-Petasin in Human Retinal Pigment Epithelium Cells Exposed to Oxidative Stress
Pizzoferrato, MichelaPrimo
;Lazzarino, GiacomoSecondo
;Tabolacci, Elisabetta;Clementi, Maria ElisabettaPenultimo
;Tringali, Giuseppe
Ultimo
2025
Abstract
The retinal pigment epithelium (RPE) is a highly specialised monolayer epithelium subjected to constant oxidative stress, which, in the long term, favours the development of a complex pathological process that is the underlying cause of macular damage. Therefore, counteracting the overproduction of ROS is the best-researched approach to preserve the functional integrity of the RPE. S-Petasin, a secondary metabolite extracted from the plant Petasites hybridus, has numerous biological effects, which highlight its anti-inflammatory and antioxidative properties. The aim of our study is to investigate whether S-Petasin exerts cytoprotective effects by protecting the RPE from oxidative damage. The effects of pretreatment with S-Petasin were assessed by the determination of the cell viability, intracellular ROS levels, activation of the Nrf2 pathway and the resulting post-transcriptional antioxidant/antiapoptotic response. Our results show that S-Petasin pretreatment (1) reduces intracellular ROS levels, improving cell viability of RPE exposed to oxidative damage; (2) activates the Nrf2 signalling pathway, modulating the post-transcriptional response of its antioxidant chemical biomarkers; (3) reduces the Bax levels, and an increase in those of Bcl-2, with a concomitant downregulation of the Bax/Bc-2 ratio. Overall, our results provide the first evidence that S-Petasin is able to protect the RPE from oxidative damage.File | Dimensione | Formato | |
---|---|---|---|
antioxidants-14-00180.pdf
accesso aperto
Licenza:
Creative commons
Dimensione
1.02 MB
Formato
Adobe PDF
|
1.02 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.