Bike Sharing Systems play a central role in what is identified to be one of the six pillars of a Smart City: smart mobility. Motivated by a freely available dataset, we discuss the employment of two robust model-based classifiers for pre- dicting the occurrence of situations in which a bike station is either empty or full, thus possibly creating demand loss and customer dissatisfaction. Experiments on BikeMi stations located in the central area of Milan are provided to underline the benefits of the proposed methods.

I sistemi di Bike Sharing giocano un ruolo centrale nella mobilita sosteni- ` bile, uno dei sei pilastri che indentificano una Smart City. Motivati da un set di dati disponibile online, questo lavoro presenta l’utilizzo di due modelli di classificazione robusta per prevedere il manifestarsi di situazioni in cui una bike station sia piena e/o vuota, cos`ı creando perdita di domanda ed insoddisfazione nei clienti. Esperimenti di classificazione sulle stazioni BikeMi nel centro di Milano evidenziano l’efficacia dei metodi proposti.

Cappozzo, A., Greselin, F., Manzi, G., Predicting and improving smart mobility: a robust model-based approach to the BikeMi BSS = Prevedere e migliorare la mobilita smart: un approccio robusto di classificazione applicato a BikeMi, Comunicazione, in Smart Statistics for Smart Applications, (Milano, 18-21 June 2019), Pearson, Milano 2019: 737-742 [https://hdl.handle.net/10807/306443]

Predicting and improving smart mobility: a robust model-based approach to the BikeMi BSS = Prevedere e migliorare la mobilita smart: un approccio robusto di classificazione applicato a BikeMi

Cappozzo, Andrea;
2019

Abstract

Bike Sharing Systems play a central role in what is identified to be one of the six pillars of a Smart City: smart mobility. Motivated by a freely available dataset, we discuss the employment of two robust model-based classifiers for pre- dicting the occurrence of situations in which a bike station is either empty or full, thus possibly creating demand loss and customer dissatisfaction. Experiments on BikeMi stations located in the central area of Milan are provided to underline the benefits of the proposed methods.
2019
Inglese
Smart Statistics for Smart Applications
Smart Statistics for Smart Applications
Milano
Comunicazione
18-giu-2019
21-giu-2019
9788891915108
Pearson
Cappozzo, A., Greselin, F., Manzi, G., Predicting and improving smart mobility: a robust model-based approach to the BikeMi BSS = Prevedere e migliorare la mobilita smart: un approccio robusto di classificazione applicato a BikeMi, Comunicazione, in Smart Statistics for Smart Applications, (Milano, 18-21 June 2019), Pearson, Milano 2019: 737-742 [https://hdl.handle.net/10807/306443]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/306443
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact