Three important issues are often encountered in Supervised Classifica- tion: class-memberships are unreliable for some training units (Label Noise), a pro- portion of observations might depart from the bulk of the data structure (Outliers) and groups represented in the test set may have not been encountered earlier in the learn- ing phase (Unobserved Classes). The present work introduces a Robust and Adaptive Eigenvalue-Decomposition Discriminant Analysis (RAEDDA) capable of handling situations in which one or more of the afore described problems occur. Transductive and inductive robust EM-based procedures are proposed for parameter estimation and experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.

Cappozzo, A., Greselin, F., Murphy, B., Supervised learning in presence of outliers, label noise and unobserved classes, Comunicazione, in Cladag2019 : Book of short papers, (Cassino, 11-13 September 2019), Centro Editoriale di Ateneo Università di Cassino e del Lazio Meridionale, Cassino 2019: 104-107 [https://hdl.handle.net/10807/306437]

Supervised learning in presence of outliers, label noise and unobserved classes

Cappozzo, Andrea;
2019

Abstract

Three important issues are often encountered in Supervised Classifica- tion: class-memberships are unreliable for some training units (Label Noise), a pro- portion of observations might depart from the bulk of the data structure (Outliers) and groups represented in the test set may have not been encountered earlier in the learn- ing phase (Unobserved Classes). The present work introduces a Robust and Adaptive Eigenvalue-Decomposition Discriminant Analysis (RAEDDA) capable of handling situations in which one or more of the afore described problems occur. Transductive and inductive robust EM-based procedures are proposed for parameter estimation and experiments on real data, artificially adulterated, are provided to underline the benefits of the proposed method.
2019
Inglese
Cladag2019 : Book of short papers
Scientific Meeting Classification and Data Analysis Group
Cassino
Comunicazione
11-set-2019
13-set-2019
978-88-8317-108-6
Centro Editoriale di Ateneo Università di Cassino e del Lazio Meridionale
Cappozzo, A., Greselin, F., Murphy, B., Supervised learning in presence of outliers, label noise and unobserved classes, Comunicazione, in Cladag2019 : Book of short papers, (Cassino, 11-13 September 2019), Centro Editoriale di Ateneo Università di Cassino e del Lazio Meridionale, Cassino 2019: 104-107 [https://hdl.handle.net/10807/306437]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/306437
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact