For every α ∈ (0, +∞) and p, q ∈ (1, +∞) let T_α be the operator L^p[0, 1] → L^q [0, 1] defined via the equality (T_α f )(x) := \int_0^{x^α} f (y) dy. We study the norms of Tα for every p, q. In the case p = q we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case p = q = 2 we determine the point spectrum and eigenfunctions for T_α^* T_α, where T_α^* is the adjoint operator.

Battistoni, F., Molteni, G., A one parameter family of Volterra-type operators, <<RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO>>, 2024; (N/A): N/A-N/A. [doi:10.1007/s12215-024-01171-8] [https://hdl.handle.net/10807/302536]

A one parameter family of Volterra-type operators

Battistoni, Francesco
Co-primo
;
2024

Abstract

For every α ∈ (0, +∞) and p, q ∈ (1, +∞) let T_α be the operator L^p[0, 1] → L^q [0, 1] defined via the equality (T_α f )(x) := \int_0^{x^α} f (y) dy. We study the norms of Tα for every p, q. In the case p = q we further study its spectrum, point spectrum, eigenfunctions, and the norms of its iterates. Moreover, for the case p = q = 2 we determine the point spectrum and eigenfunctions for T_α^* T_α, where T_α^* is the adjoint operator.
2024
Inglese
Battistoni, F., Molteni, G., A one parameter family of Volterra-type operators, <<RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO>>, 2024; (N/A): N/A-N/A. [doi:10.1007/s12215-024-01171-8] [https://hdl.handle.net/10807/302536]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/302536
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact