Background: The debate surrounding the efficacy of coronary physiological guidance compared with conventional angiography in achieving optimal post–percutaneous coronary intervention (PCI) fractional flow reserve (FFR) values persists. Objectives: The primary aim of this study was to demonstrate the superiority of physiology-guided PCI, using either angiography or microcatheter-derived FFR, over conventional angiography-based PCI in complex high-risk indicated procedures (CHIPs). The secondary aim was to establish the noninferiority of angiography-derived FFR guidance compared with microcatheter-derived FFR guidance. Methods: Patients with obstructive coronary lesions and meeting CHIP criteria were randomized 2:1 to receive undergo physiology- or angiography-based PCI. Those assigned to the former were randomly allocated to angiography- or microcatheter-derived FFR guidance. CHIP criteria were long lesion (>28 mm), tandem lesions, severe calcifications, severe tortuosity, true bifurcation, in-stent restenosis, and left main stem disease. The primary outcome was invasive post-PCI FFR value. The optimal post-PCI FFR value was defined as >0.86. Results: A total of 305 patients (331 study vessels) were enrolled in the study (101 undergoing conventional angiography-based PCI and 204 physiology-based PCI). Optimal post-PCI FFR values were more frequent in the physiology-based PCI group compared with the conventional angiography-based PCI group (77% vs 54%; absolute difference 23%, relative difference 30%; P < 0.0001). The occurrence of the primary outcome did not differ between the 2 physiology-based PCI subgroups, demonstrating the noninferiority of angiography- vs microcatheter-derived FFR (P < 0.01). Conclusions: In CHIP patients, procedural planning and guidance on the basis of physiology (through either angiography- or microcatheter-derived FFR) are superior to conventional angiography for achieving optimal post-PCI FFR values. (Physiology Optimized Versus Angio-Guided PCI [AQVA-II]; NCT05658952)
Biscaglia, S., Verardi, F. M., Erriquez, A., Colaiori, I., Cocco, M., Cantone, A., Pompei, G., Marrone, A., Caglioni, S., Tumscitz, C., Penzo, C., Manfrini, M., Leone, A. M., Versaci, F., Campo, G., Coronary Physiology Guidance vs Conventional Angiography for Optimization of Percutaneous Coronary Intervention: The AQVA-II Trial, <<JACC. CARDIOVASCULAR INTERVENTIONS>>, 2024; 17 (2): 277-287. [doi:10.1016/j.jcin.2023.10.032] [https://hdl.handle.net/10807/302400]
Coronary Physiology Guidance vs Conventional Angiography for Optimization of Percutaneous Coronary Intervention: The AQVA-II Trial
Leone, Antonio Maria;
2024
Abstract
Background: The debate surrounding the efficacy of coronary physiological guidance compared with conventional angiography in achieving optimal post–percutaneous coronary intervention (PCI) fractional flow reserve (FFR) values persists. Objectives: The primary aim of this study was to demonstrate the superiority of physiology-guided PCI, using either angiography or microcatheter-derived FFR, over conventional angiography-based PCI in complex high-risk indicated procedures (CHIPs). The secondary aim was to establish the noninferiority of angiography-derived FFR guidance compared with microcatheter-derived FFR guidance. Methods: Patients with obstructive coronary lesions and meeting CHIP criteria were randomized 2:1 to receive undergo physiology- or angiography-based PCI. Those assigned to the former were randomly allocated to angiography- or microcatheter-derived FFR guidance. CHIP criteria were long lesion (>28 mm), tandem lesions, severe calcifications, severe tortuosity, true bifurcation, in-stent restenosis, and left main stem disease. The primary outcome was invasive post-PCI FFR value. The optimal post-PCI FFR value was defined as >0.86. Results: A total of 305 patients (331 study vessels) were enrolled in the study (101 undergoing conventional angiography-based PCI and 204 physiology-based PCI). Optimal post-PCI FFR values were more frequent in the physiology-based PCI group compared with the conventional angiography-based PCI group (77% vs 54%; absolute difference 23%, relative difference 30%; P < 0.0001). The occurrence of the primary outcome did not differ between the 2 physiology-based PCI subgroups, demonstrating the noninferiority of angiography- vs microcatheter-derived FFR (P < 0.01). Conclusions: In CHIP patients, procedural planning and guidance on the basis of physiology (through either angiography- or microcatheter-derived FFR) are superior to conventional angiography for achieving optimal post-PCI FFR values. (Physiology Optimized Versus Angio-Guided PCI [AQVA-II]; NCT05658952)I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.