Urinary tract infections (UTIs) are the main complication associated with clean intermittent catheterization (CIC) and are facilitated by post-void residual urine and trauma to the mucosa during voiding. The risk of UTI may be diminished by reducing the residual volumes and preventing microtrauma caused by mucosal suction through the eyelets of conventional eyelet catheters (CEC). A new micro-hole zone catheter (MHZC) was developed and tested in an ex vivo porcine lower urinary tract model and in vivo, in pigs, against a CEC. It was shown that, irrespective of the micro-hole diameter, the new catheter ensured increased flowrates and significantly lower residual volumes at the first flow-stop. Furthermore, with a micro-hole diameter of 0.4 mm, mucosal suction was virtually eliminated, regardless of the insertion depth or simulated intra-abdominal pressure mimicking sitting or standing humans. Pressure profile experiments and endoscopy studies indicated that the bladder gradually folds against the drainage tip of the new catheter, without blocking the flow, and, unlike with the CEC, sharp pressure variations and flow-stops did not occur during voiding. The MHZC outperformed the CEC in all tested scenarios and decreased residual volumes, thus potentially decreasing the risk of UTIs.

Schrøder, B., Tentor, F., Miclăuş, T., Stærk, K., Andersen, T. E., Spinelli, M., Rendeli, C., Del Popolo, G., Bagi, P., Nielsen, L. F., New micro-hole zone catheter reduces residual urine and mucosal microtrauma in a lower urinary tract model, <<SCIENTIFIC REPORTS>>, 2024; 14 (1): N/A-N/A. [doi:10.1038/s41598-024-52505-6] [https://hdl.handle.net/10807/301959]

New micro-hole zone catheter reduces residual urine and mucosal microtrauma in a lower urinary tract model

Rendeli, Claudia;
2024

Abstract

Urinary tract infections (UTIs) are the main complication associated with clean intermittent catheterization (CIC) and are facilitated by post-void residual urine and trauma to the mucosa during voiding. The risk of UTI may be diminished by reducing the residual volumes and preventing microtrauma caused by mucosal suction through the eyelets of conventional eyelet catheters (CEC). A new micro-hole zone catheter (MHZC) was developed and tested in an ex vivo porcine lower urinary tract model and in vivo, in pigs, against a CEC. It was shown that, irrespective of the micro-hole diameter, the new catheter ensured increased flowrates and significantly lower residual volumes at the first flow-stop. Furthermore, with a micro-hole diameter of 0.4 mm, mucosal suction was virtually eliminated, regardless of the insertion depth or simulated intra-abdominal pressure mimicking sitting or standing humans. Pressure profile experiments and endoscopy studies indicated that the bladder gradually folds against the drainage tip of the new catheter, without blocking the flow, and, unlike with the CEC, sharp pressure variations and flow-stops did not occur during voiding. The MHZC outperformed the CEC in all tested scenarios and decreased residual volumes, thus potentially decreasing the risk of UTIs.
2024
Inglese
Schrøder, B., Tentor, F., Miclăuş, T., Stærk, K., Andersen, T. E., Spinelli, M., Rendeli, C., Del Popolo, G., Bagi, P., Nielsen, L. F., New micro-hole zone catheter reduces residual urine and mucosal microtrauma in a lower urinary tract model, <<SCIENTIFIC REPORTS>>, 2024; 14 (1): N/A-N/A. [doi:10.1038/s41598-024-52505-6] [https://hdl.handle.net/10807/301959]
File in questo prodotto:
File Dimensione Formato  
new.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/301959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 4
social impact