We consider a strongly damped semilinear equation arising in the theory of elastic beams. We prove the existence of an exponentially attracting finite-dimensional vector space in the Hilbert space of the solutions (a so-called inertial manifold), and provide some numerical estimates of the dimension of the manifold.

Bianchi, G., Marzocchi, A., Inertial manifold for the motion of strongly damped nonlinear elastic beams, <<NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS>>, 1998; 5 (2): 181-192. [doi:10.1007/s000300050041] [https://hdl.handle.net/10807/300020]

Inertial manifold for the motion of strongly damped nonlinear elastic beams

Marzocchi, Alfredo
1998

Abstract

We consider a strongly damped semilinear equation arising in the theory of elastic beams. We prove the existence of an exponentially attracting finite-dimensional vector space in the Hilbert space of the solutions (a so-called inertial manifold), and provide some numerical estimates of the dimension of the manifold.
1998
Inglese
Bianchi, G., Marzocchi, A., Inertial manifold for the motion of strongly damped nonlinear elastic beams, <<NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS>>, 1998; 5 (2): 181-192. [doi:10.1007/s000300050041] [https://hdl.handle.net/10807/300020]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/300020
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact