The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.

Fallerini, C., Picchiotti, N., Baldassarri, M., Zguro, K., Daga, S., Fava, F., Benetti, E., Amitrano, S., Bruttini, M., Palmieri, M., Croci, S., Lista, M., Beligni, G., Valentino, F., Meloni, I., Tanfoni, M., Minnai, F., Colombo, F., Cabri, E., Fratelli, M., Gabbi, C., Mantovani, S., Frullanti, E., Gori, M., Crawley, F. P., Butler-Laporte, G., Richards, B., Zeberg, H., Lipcsey, M., Hultström, M., Ludwig, K. U., Schulte, E. C., Pairo-Castineira, E., Baillie, J. K., Schmidt, A., Frithiof, R., Mari, F., Renieri, A., Furini, S., Montagnani, F., Tumbarello, M., Rancan, I., Fabbiani, M., Rossetti, B., Bergantini, L., D’Alessandro, M., Cameli, P., Bennett, D., Anedda, F., Marcantonio, S., Scolletta, S., Franchi, F., Mazzei, M. A., Guerrini, S., Conticini, E., Cantarini, L., Frediani, B., Tacconi, D., Raffaelli, C. S., Feri, M., Donati, A., Scala, R., Guidelli, L., Spargi, G., Corridi, M., Nencioni, C., Croci, L., Caldarelli, G. P., Spagnesi, M., Romani, D., Piacentini, P., Bandini, M., Desanctis, E., Cappelli, S., Canaccini, A., Verzuri, A., Anemoli, V., Pisani, M., Ognibene, A., Pancrazzi, A., Lorubbio, M., Vaghi, M., Monforte, A. D., Miraglia, F. G., Mondelli, M. U., Girardis, M., Venturelli, S., Busani, S., Cossarizza, A., Antinori, A., Vergori, A., Emiliozzi, A., Rusconi, S., Siano, M., Gabrieli, A., Riva, A., Francisci, D., Schiaroli, E., Paciosi, F., Tommasi, A., Masucci, L., Wes/wgs Working Group Within The, H., Genomicc, C., Gen-Covid Multicenter, S., Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity, <<HUMAN GENETICS>>, 2022; 141 (1): 147-173. [doi:10.1007/s00439-021-02397-7] [https://hdl.handle.net/10807/294197]

Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity

Palmieri, Marco;Lista, Maddalena;Valentino, Francesca;Fratelli, Maria;Gabbi, Chiara;Mantovani, Susanna;Gori, Mario;Tumbarello, Mario
Membro del Collaboration Group
;
Rossetti, Barbara;Franchi, Francesca;Cantarini, Luca;Donati, Andrea;Antinori, Armando;Masucci, Luca;
2022

Abstract

The combined impact of common and rare exonic variants in COVID-19 host genetics is currently insufficiently understood. Here, common and rare variants from whole-exome sequencing data of about 4000 SARS-CoV-2-positive individuals were used to define an interpretable machine-learning model for predicting COVID-19 severity. First, variants were converted into separate sets of Boolean features, depending on the absence or the presence of variants in each gene. An ensemble of LASSO logistic regression models was used to identify the most informative Boolean features with respect to the genetic bases of severity. The Boolean features selected by these logistic models were combined into an Integrated PolyGenic Score that offers a synthetic and interpretable index for describing the contribution of host genetics in COVID-19 severity, as demonstrated through testing in several independent cohorts. Selected features belong to ultra-rare, rare, low-frequency, and common variants, including those in linkage disequilibrium with known GWAS loci. Noteworthily, around one quarter of the selected genes are sex-specific. Pathway analysis of the selected genes associated with COVID-19 severity reflected the multi-organ nature of the disease. The proposed model might provide useful information for developing diagnostics and therapeutics, while also being able to guide bedside disease management.
2022
Inglese
Fallerini, C., Picchiotti, N., Baldassarri, M., Zguro, K., Daga, S., Fava, F., Benetti, E., Amitrano, S., Bruttini, M., Palmieri, M., Croci, S., Lista, M., Beligni, G., Valentino, F., Meloni, I., Tanfoni, M., Minnai, F., Colombo, F., Cabri, E., Fratelli, M., Gabbi, C., Mantovani, S., Frullanti, E., Gori, M., Crawley, F. P., Butler-Laporte, G., Richards, B., Zeberg, H., Lipcsey, M., Hultström, M., Ludwig, K. U., Schulte, E. C., Pairo-Castineira, E., Baillie, J. K., Schmidt, A., Frithiof, R., Mari, F., Renieri, A., Furini, S., Montagnani, F., Tumbarello, M., Rancan, I., Fabbiani, M., Rossetti, B., Bergantini, L., D’Alessandro, M., Cameli, P., Bennett, D., Anedda, F., Marcantonio, S., Scolletta, S., Franchi, F., Mazzei, M. A., Guerrini, S., Conticini, E., Cantarini, L., Frediani, B., Tacconi, D., Raffaelli, C. S., Feri, M., Donati, A., Scala, R., Guidelli, L., Spargi, G., Corridi, M., Nencioni, C., Croci, L., Caldarelli, G. P., Spagnesi, M., Romani, D., Piacentini, P., Bandini, M., Desanctis, E., Cappelli, S., Canaccini, A., Verzuri, A., Anemoli, V., Pisani, M., Ognibene, A., Pancrazzi, A., Lorubbio, M., Vaghi, M., Monforte, A. D., Miraglia, F. G., Mondelli, M. U., Girardis, M., Venturelli, S., Busani, S., Cossarizza, A., Antinori, A., Vergori, A., Emiliozzi, A., Rusconi, S., Siano, M., Gabrieli, A., Riva, A., Francisci, D., Schiaroli, E., Paciosi, F., Tommasi, A., Masucci, L., Wes/wgs Working Group Within The, H., Genomicc, C., Gen-Covid Multicenter, S., Common, low-frequency, rare, and ultra-rare coding variants contribute to COVID-19 severity, <<HUMAN GENETICS>>, 2022; 141 (1): 147-173. [doi:10.1007/s00439-021-02397-7] [https://hdl.handle.net/10807/294197]
File in questo prodotto:
File Dimensione Formato  
Common, low-frequency.pdf

accesso aperto

Licenza: Creative commons
Dimensione 3.97 MB
Formato Adobe PDF
3.97 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/294197
Citazioni
  • ???jsp.display-item.citation.pmc??? 19
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 24
social impact