The aim of this work was to evaluate the antineoplastic effect of newly synthesized nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) alone or PLGA esterified with 2,2′- [propane-2,2-diylbis (thio)] diacetic acid (TKL), loaded with docetaxel (DTX) and/or docosahexaenoic acid (DHA), as innovative site-specific therapeutic carriers. The obtained materials were characterized by FT-IR and 1H-NMR, while the dimensional analysis of the nanoparticles obtained was performed by Dynamic Light Scattering. The encapsulation efficiency of the nanoparticles was evaluated, and in vitro skin permeation tests were also performed. The antitumor activity of the nanomaterial was studied in the human adenocarcinoma HCT116 cell line. In particular, viability tests in bidimensional culture, as well as in tumor spheroids, were conducted. The use of these nanocarriers could facilitate the stable and efficient delivery of DTX and DHA through the upper segments of the gastrointestinal tract to the colon. In addition, the presence of the ROS-sensitive 2,2′-[propane-2,2-diylbis (thio)] diacetic acid in their matrix should promote the site-specific release of DTX in the tumor mass, where high levels of reactive oxygen species could be found.
Cassano, R., Trombino, S., Curcio, F., Sole, R., Calviello, G., Serini, S., ROS-Responsive PLGA-NPs for Co-Delivery of DTX and DHA for Colon Cancer Treatment, <<International Journal of Translational Medicine>>, 2024; 2024 (4): 262-277. [doi:10.3390/ijtm4020016] [https://hdl.handle.net/10807/279878]
ROS-Responsive PLGA-NPs for Co-Delivery of DTX and DHA for Colon Cancer Treatment
Calviello, GabriellaPenultimo
Membro del Collaboration Group
;Serini, SimonaUltimo
Membro del Collaboration Group
2024
Abstract
The aim of this work was to evaluate the antineoplastic effect of newly synthesized nanoparticles based on poly(lactic-co-glycolic acid) (PLGA) alone or PLGA esterified with 2,2′- [propane-2,2-diylbis (thio)] diacetic acid (TKL), loaded with docetaxel (DTX) and/or docosahexaenoic acid (DHA), as innovative site-specific therapeutic carriers. The obtained materials were characterized by FT-IR and 1H-NMR, while the dimensional analysis of the nanoparticles obtained was performed by Dynamic Light Scattering. The encapsulation efficiency of the nanoparticles was evaluated, and in vitro skin permeation tests were also performed. The antitumor activity of the nanomaterial was studied in the human adenocarcinoma HCT116 cell line. In particular, viability tests in bidimensional culture, as well as in tumor spheroids, were conducted. The use of these nanocarriers could facilitate the stable and efficient delivery of DTX and DHA through the upper segments of the gastrointestinal tract to the colon. In addition, the presence of the ROS-sensitive 2,2′-[propane-2,2-diylbis (thio)] diacetic acid in their matrix should promote the site-specific release of DTX in the tumor mass, where high levels of reactive oxygen species could be found.File | Dimensione | Formato | |
---|---|---|---|
Cassano et al., IJTM 2024.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.53 MB
Formato
Adobe PDF
|
2.53 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.