As an application of Turán sieve, we give upper bounds for the number of elliptic curves defined over Q(T) in some families having positive rank, obtaining in particular that these form a subset of density zero. This confirms Cowan’s conjecture (Cowan in Conjecture: 100% of elliptic surfaces over Q have rank zero. Preprint. https://arxiv.org/pdf/2009.08622.pdf, 2020) in the case m, n≤ 2.

Battistoni, F., Bettin, S., Delaunay, C., On the typical rank of elliptic curves over Q(T), <<RESEARCH IN NUMBER THEORY>>, 2022; 8 (4): N/A-N/A. [doi:10.1007/s40993-022-00377-y] [https://hdl.handle.net/10807/270244]

On the typical rank of elliptic curves over Q(T)

Battistoni, Francesco
Co-primo
;
2022

Abstract

As an application of Turán sieve, we give upper bounds for the number of elliptic curves defined over Q(T) in some families having positive rank, obtaining in particular that these form a subset of density zero. This confirms Cowan’s conjecture (Cowan in Conjecture: 100% of elliptic surfaces over Q have rank zero. Preprint. https://arxiv.org/pdf/2009.08622.pdf, 2020) in the case m, n≤ 2.
2022
Inglese
Battistoni, F., Bettin, S., Delaunay, C., On the typical rank of elliptic curves over Q(T), <<RESEARCH IN NUMBER THEORY>>, 2022; 8 (4): N/A-N/A. [doi:10.1007/s40993-022-00377-y] [https://hdl.handle.net/10807/270244]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/270244
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact