In organisational contexts, professionals are required to decide dynamically and prioritise unexpected external inputs deriving from multiple sources. In the present study, we applied a multimethodological neuroscientific approach to investigate the ability to resist and control ecological distractors during decision-making and to explore whether a specific behavioural, neurophysiological (i.e., delta, theta, alpha and beta EEG band), or autonomic (i.e., heart rate—HR, and skin conductance response—SCR) pattern is correlated with specific personality profiles, collected with the 10-item Big Five Inventory. Twenty-four participants performed a novel Resistance to Ecological Distractors (RED) task aimed at exploring the ability to resist and control distractors and the level of coherence and awareness of behaviour (metacognition ability), while neurophysiological and autonomic measures were collected. The behavioural results highlighted that effectiveness in performance did not require self-control and metacognition behaviour and that being proficient in metacognition can have an impact on performance. Moreover, it was shown that the ability to resist ecological distractors is related to a specific autonomic profile (HR and SCR decrease) and that the neurophysiological and autonomic activations during task execution correlate with specific personality profiles. The agreeableness profile was negatively correlated with the EEG theta band and positively with the EEG beta band, the conscientiousness profile was negatively correlated with the EEG alpha band, and the extroversion profile was positively correlated with the EEG beta band. Taken together, these findings describe and disentangle the hidden relationship that lies beneath individuals’ decision to inhibit or activate intentionally a specific behaviour, such as responding, or not, to an external stimulus, in ecological conditions.

Balconi, M., Acconito, C., Allegretta, R. A., Angioletti, L., Neurophysiological and autonomic correlates of metacognitive control of and resistance to distractors in ecological setting: a pilot study, <<SENSORS>>, 2024; 24 (7): 1-18. [doi:10.3390/s24072171] [https://hdl.handle.net/10807/270082]

Neurophysiological and autonomic correlates of metacognitive control of and resistance to distractors in ecological setting: a pilot study

Balconi, Michela;Acconito, Carlotta
;
Allegretta, Roberta Antonia;Angioletti, Laura
2024

Abstract

In organisational contexts, professionals are required to decide dynamically and prioritise unexpected external inputs deriving from multiple sources. In the present study, we applied a multimethodological neuroscientific approach to investigate the ability to resist and control ecological distractors during decision-making and to explore whether a specific behavioural, neurophysiological (i.e., delta, theta, alpha and beta EEG band), or autonomic (i.e., heart rate—HR, and skin conductance response—SCR) pattern is correlated with specific personality profiles, collected with the 10-item Big Five Inventory. Twenty-four participants performed a novel Resistance to Ecological Distractors (RED) task aimed at exploring the ability to resist and control distractors and the level of coherence and awareness of behaviour (metacognition ability), while neurophysiological and autonomic measures were collected. The behavioural results highlighted that effectiveness in performance did not require self-control and metacognition behaviour and that being proficient in metacognition can have an impact on performance. Moreover, it was shown that the ability to resist ecological distractors is related to a specific autonomic profile (HR and SCR decrease) and that the neurophysiological and autonomic activations during task execution correlate with specific personality profiles. The agreeableness profile was negatively correlated with the EEG theta band and positively with the EEG beta band, the conscientiousness profile was negatively correlated with the EEG alpha band, and the extroversion profile was positively correlated with the EEG beta band. Taken together, these findings describe and disentangle the hidden relationship that lies beneath individuals’ decision to inhibit or activate intentionally a specific behaviour, such as responding, or not, to an external stimulus, in ecological conditions.
2024
Inglese
Balconi, M., Acconito, C., Allegretta, R. A., Angioletti, L., Neurophysiological and autonomic correlates of metacognitive control of and resistance to distractors in ecological setting: a pilot study, <<SENSORS>>, 2024; 24 (7): 1-18. [doi:10.3390/s24072171] [https://hdl.handle.net/10807/270082]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/270082
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact