We prove that quasi-concave positive solutions to a class of quasi-linear elliptic equations driven by the p-Laplacian in convex bounded domains of the plane have only one critical point. As a consequence, we obtain strict concavity results for suitable transformations of these solutions.
Borrelli, W., Mosconi, S., Squassina, M., Uniqueness of the critical point for solutions of some p-Laplace equations in the plane, <<ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI>>, 2023; 34 (1): 61-88. [doi:10.4171/RLM/997] [https://hdl.handle.net/10807/269615]
Uniqueness of the critical point for solutions of some p-Laplace equations in the plane
Borrelli, William;Squassina, Marco
2023
Abstract
We prove that quasi-concave positive solutions to a class of quasi-linear elliptic equations driven by the p-Laplacian in convex bounded domains of the plane have only one critical point. As a consequence, we obtain strict concavity results for suitable transformations of these solutions.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
10.4171-rlm-997.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
467.32 kB
Formato
Adobe PDF
|
467.32 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.