We prove that quasi-concave positive solutions to a class of quasi-linear elliptic equations driven by the p-Laplacian in convex bounded domains of the plane have only one critical point. As a consequence, we obtain strict concavity results for suitable transformations of these solutions.

Borrelli, W., Mosconi, S., Squassina, M., Uniqueness of the critical point for solutions of some p-Laplace equations in the plane, <<ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI>>, 2023; 34 (1): 61-88. [doi:10.4171/RLM/997] [https://hdl.handle.net/10807/269615]

Uniqueness of the critical point for solutions of some p-Laplace equations in the plane

Borrelli, William;Squassina, Marco
2023

Abstract

We prove that quasi-concave positive solutions to a class of quasi-linear elliptic equations driven by the p-Laplacian in convex bounded domains of the plane have only one critical point. As a consequence, we obtain strict concavity results for suitable transformations of these solutions.
2023
Inglese
Borrelli, W., Mosconi, S., Squassina, M., Uniqueness of the critical point for solutions of some p-Laplace equations in the plane, <<ATTI DELLA ACCADEMIA NAZIONALE DEI LINCEI. RENDICONTI LINCEI. MATEMATICA E APPLICAZIONI>>, 2023; 34 (1): 61-88. [doi:10.4171/RLM/997] [https://hdl.handle.net/10807/269615]
File in questo prodotto:
File Dimensione Formato  
10.4171-rlm-997.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 467.32 kB
Formato Adobe PDF
467.32 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/269615
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact