We establish critical groups estimates for the weak solutions of − Δ_p u = f(x, u) in Ω and u = 0 on ∂Ω via Morse index, where Ω is a bounded domain, f ∈ C^1(Ω×R) and f(x, s) > 0 for all x ∈ Ω, s > 0 and f(x, s) = 0 for all x ∈ Ω, s ≤ 0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and f is a sign changing function.

Cingolani, S., Degiovanni, M., Sciunzi, B., Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, 2024; 286 (8): N/A-N/A. [doi:10.1016/j.jfa.2024.110346] [https://hdl.handle.net/10807/267554]

Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations

Degiovanni, Marco;
2024

Abstract

We establish critical groups estimates for the weak solutions of − Δ_p u = f(x, u) in Ω and u = 0 on ∂Ω via Morse index, where Ω is a bounded domain, f ∈ C^1(Ω×R) and f(x, s) > 0 for all x ∈ Ω, s > 0 and f(x, s) = 0 for all x ∈ Ω, s ≤ 0. The proof relies on new uniform Sobolev inequalities for approximating problems. We also prove critical groups estimates when Ω is the ball or the annulus and f is a sign changing function.
2024
Inglese
Cingolani, S., Degiovanni, M., Sciunzi, B., Weighted Sobolev spaces and Morse estimates for quasilinear elliptic equations, <<JOURNAL OF FUNCTIONAL ANALYSIS>>, 2024; 286 (8): N/A-N/A. [doi:10.1016/j.jfa.2024.110346] [https://hdl.handle.net/10807/267554]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/267554
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact