Thermodynamics of the binding of Ni2+, Cu2+ and Zn2+ to bacitracin A(1) was studied by capillary electrophoresis measuring the peptide effective mobility at different pH in the presence of increasing concentration of the three ligands. The affinity follows the order Ni2+ > Cu2+ > Zn2+, with association constant values of (2.3+/- 0.1) X 10(4), (4.9+/-0.2) x 10(3), and (1.5 +/- 0.1) x 10(3) m(-1), respectively. The only model able to rationalize mobility data implies that metal ion binds to the P-O peptide form. Moreover, mobility values indicated a change of bacitracin A(1) acidic properties on Ni2+ and Cu2+ binding, with a shift of the pK(a), of N-terminal Ile-1 from 7.6 to about 5 and of the pK(a) of the delta-amino group Of D-Orn-7 from 9.7 to about 7. Even though on Zn2+ binding a shift of the N-terminal Ile-1 pK(a) was observed, restrictions in the pH range suitable for investigation, due to precipitation phenomena, did not allow establish if the shift Of D-Orn-7 lateral chain pK(a) also occurred. Nonetheless, if present, the shift should be limited to the 7.8-9.7 range. Mobility data indicated that the Stokes radius of the complexes is ca. 3 Angstrom lower than that of the free peptide. The present results indicate that metal-ion binding to bacitracin A(1) is more complex than previously assumed.

Castagnola, M., Rossetti, D. V., Inzitari, R., Lupi, A., Zuppi, C., Cabras, T., Fadda, M. B., Onnis, G., Petruzzelli, R., Giardina, B., Messana, I., Different binding thermodynamics of Ni+2, Cu+2 and Zn+2 to bacitracin A1 determined by capillary electrophoresis, <<ELECTROPHORESIS>>, 2004; (25): 846-852 [http://hdl.handle.net/10807/25599]

Different binding thermodynamics of Ni+2, Cu+2 and Zn+2 to bacitracin A1 determined by capillary electrophoresis

Castagnola, Massimo;Rossetti, Diana Valeria;Inzitari, Rosanna;Lupi, Alessandro;Zuppi, Cecilia;Giardina, Bruno;
2004

Abstract

Thermodynamics of the binding of Ni2+, Cu2+ and Zn2+ to bacitracin A(1) was studied by capillary electrophoresis measuring the peptide effective mobility at different pH in the presence of increasing concentration of the three ligands. The affinity follows the order Ni2+ > Cu2+ > Zn2+, with association constant values of (2.3+/- 0.1) X 10(4), (4.9+/-0.2) x 10(3), and (1.5 +/- 0.1) x 10(3) m(-1), respectively. The only model able to rationalize mobility data implies that metal ion binds to the P-O peptide form. Moreover, mobility values indicated a change of bacitracin A(1) acidic properties on Ni2+ and Cu2+ binding, with a shift of the pK(a), of N-terminal Ile-1 from 7.6 to about 5 and of the pK(a) of the delta-amino group Of D-Orn-7 from 9.7 to about 7. Even though on Zn2+ binding a shift of the N-terminal Ile-1 pK(a) was observed, restrictions in the pH range suitable for investigation, due to precipitation phenomena, did not allow establish if the shift Of D-Orn-7 lateral chain pK(a) also occurred. Nonetheless, if present, the shift should be limited to the 7.8-9.7 range. Mobility data indicated that the Stokes radius of the complexes is ca. 3 Angstrom lower than that of the free peptide. The present results indicate that metal-ion binding to bacitracin A(1) is more complex than previously assumed.
Inglese
Castagnola, M., Rossetti, D. V., Inzitari, R., Lupi, A., Zuppi, C., Cabras, T., Fadda, M. B., Onnis, G., Petruzzelli, R., Giardina, B., Messana, I., Different binding thermodynamics of Ni+2, Cu+2 and Zn+2 to bacitracin A1 determined by capillary electrophoresis, <<ELECTROPHORESIS>>, 2004; (25): 846-852 [http://hdl.handle.net/10807/25599]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/25599
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact