We aimed to demonstrate that coronary CT angiography (cCTA) can be used to non-invasively study the effect of hemodynamic factors in the pathophysiology of plaque formation. cCTA data of 73 patients were analyzed. All detected plaques were classified according to location (bifurcation, non-branching segment), configuration (eccentric, concentric), orientation (myocardial, lateral, epicardial side of the vessel wall), and composition (calcified, mixed, non-calcified). Bifurcation lesions were further characterized using the Medina classification. Of 382 plaques, 8.1% were in the LM, 46.3% in the LAD, 18.3% in the LCx, and 25.9% in the RCA. Also, 25.1% were completely calcified, 72.3% were mixed, and 2.6% were purely non-calcified. Of the plaques, 51.3% were bifurcation lesions. The most frequent (40%) Medina pattern was 1.1.0 (lesion starts before, extends beyond bifurcation, sparing the side branch). Eighty percent of plaques were eccentric. A significant (p < 0.01) majority (55%) were on the myocardial side, while 17.3% were lateral, and 27.7% epicardial. Of all non-calcified and mixed plaques, 45.1% (p < 0.01) were myocardial, whereas only 14.3% were lateral, 20.6% epicardial, and 19.9% concentric. We conclude that cCTA can non-invasively study the effect of vascular hemodynamics, such as turbulent flow (bifurcations) and low shear stress (myocardial vessel wall), on the distribution and composition of atherosclerotic plaque deposition.
Enrico, B., Suranyi, P., Thilo, C., Bonomo, L., Costello, P., Scoepf, U., Coronary artery plaque formation at coronary ct angiography: morphological analysis and relationship to hemodynamics, <<EUROPEAN RADIOLOGY>>, 2009; 19 (4): 837-844 [http://hdl.handle.net/10807/25570]
Coronary artery plaque formation at coronary ct angiography: morphological analysis and relationship to hemodynamics
Enrico, Benedetta;Bonomo, Lorenzo;
2008
Abstract
We aimed to demonstrate that coronary CT angiography (cCTA) can be used to non-invasively study the effect of hemodynamic factors in the pathophysiology of plaque formation. cCTA data of 73 patients were analyzed. All detected plaques were classified according to location (bifurcation, non-branching segment), configuration (eccentric, concentric), orientation (myocardial, lateral, epicardial side of the vessel wall), and composition (calcified, mixed, non-calcified). Bifurcation lesions were further characterized using the Medina classification. Of 382 plaques, 8.1% were in the LM, 46.3% in the LAD, 18.3% in the LCx, and 25.9% in the RCA. Also, 25.1% were completely calcified, 72.3% were mixed, and 2.6% were purely non-calcified. Of the plaques, 51.3% were bifurcation lesions. The most frequent (40%) Medina pattern was 1.1.0 (lesion starts before, extends beyond bifurcation, sparing the side branch). Eighty percent of plaques were eccentric. A significant (p < 0.01) majority (55%) were on the myocardial side, while 17.3% were lateral, and 27.7% epicardial. Of all non-calcified and mixed plaques, 45.1% (p < 0.01) were myocardial, whereas only 14.3% were lateral, 20.6% epicardial, and 19.9% concentric. We conclude that cCTA can non-invasively study the effect of vascular hemodynamics, such as turbulent flow (bifurcations) and low shear stress (myocardial vessel wall), on the distribution and composition of atherosclerotic plaque deposition.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.