The autosomal-dominant giant platelet syndromes (Fechtner, Epstein, and Sebastian platelet syndromes and May-Hegglin anomaly) represent a group of disorders characterized by variable degrees of macrothrombocytopenia with further combinations of neutrophil inclusion bodies and Alport-like syndrome manifestations, namely, deafness, renal disease, and eye abnormalities. The disease-causing gene of these giant platelet syndromes was previously mapped by us to chromosome 22. Following their successful mapping, these syndromes were shown to represent a broad phenotypic spectrum of disorders caused by different mutations in the nonmuscle myosin heavy chain 9 gene (MYH9). In this study, we examined the potential role of another gene, fibulin-1, encoding an extracellular matrix protein as a disease modifier. Eight unrelated families with autosomal-dominant giant platelet syndromes were studied for DNA sequence mutations and expression of the four fibulin-1 splice variants (A-D). A mutation in the splice acceptor site of fibulin-1 exon 19 was found in affected individuals of the Israeli Fechtner family, whereas no MYH9 mutations were identified. Unexpectedly, fibulin-1 variant D expression was absent in affected individuals from all eight families and coupled with expression of a putative antisense RNA. Transfection of the putative antisense RNA into H1299 cells abolished variant D expression. Based on the observation that only affected individuals lack variant D expression and demonstrate antisense RNA overexpression, we suggest that these autosomal-dominant giant platelet syndromes are associated, and may be modified, by aberrant antisense gene regulation of the fibulin-1 gene.
Toren, A., Rozenfeld Granot, G., Heath, K., Amariglio, N., Rocca, B., Crosson, J., Epstein, C., Laghi, F., Landolfi, R., Carlsson, L., Argraves, S., Bizzaro, N., Moxey Mims, M., Brok Simoni, F., Martignetti, J., Greinacher, A., Rechavi, G., MYH9 spectrum of autosomal-dominant giant platelet syndromes: unexpected association with fibulin-1 variant-D inactivation, <<AMERICAN JOURNAL OF HEMATOLOGY>>, 2003; 74 (4): 254-262. [doi:10.1002/ajh.10425] [http://hdl.handle.net/10807/25320]
MYH9 spectrum of autosomal-dominant giant platelet syndromes: unexpected association with fibulin-1 variant-D inactivation
Rocca, Bianca;Landolfi, Raffaele;
2003
Abstract
The autosomal-dominant giant platelet syndromes (Fechtner, Epstein, and Sebastian platelet syndromes and May-Hegglin anomaly) represent a group of disorders characterized by variable degrees of macrothrombocytopenia with further combinations of neutrophil inclusion bodies and Alport-like syndrome manifestations, namely, deafness, renal disease, and eye abnormalities. The disease-causing gene of these giant platelet syndromes was previously mapped by us to chromosome 22. Following their successful mapping, these syndromes were shown to represent a broad phenotypic spectrum of disorders caused by different mutations in the nonmuscle myosin heavy chain 9 gene (MYH9). In this study, we examined the potential role of another gene, fibulin-1, encoding an extracellular matrix protein as a disease modifier. Eight unrelated families with autosomal-dominant giant platelet syndromes were studied for DNA sequence mutations and expression of the four fibulin-1 splice variants (A-D). A mutation in the splice acceptor site of fibulin-1 exon 19 was found in affected individuals of the Israeli Fechtner family, whereas no MYH9 mutations were identified. Unexpectedly, fibulin-1 variant D expression was absent in affected individuals from all eight families and coupled with expression of a putative antisense RNA. Transfection of the putative antisense RNA into H1299 cells abolished variant D expression. Based on the observation that only affected individuals lack variant D expression and demonstrate antisense RNA overexpression, we suggest that these autosomal-dominant giant platelet syndromes are associated, and may be modified, by aberrant antisense gene regulation of the fibulin-1 gene.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.