Aim of this short note is to study Shannon's entropy power along entropic interpolations, thus generalizing Costa's concavity theorem. We shall provide two proofs of independent interest: the former by G-calculus, hence applicable to more abstract frameworks; the latter with an explicit remainder term, reminiscent of Villani (IEEE Trans. Inf. Theory, 2006), allowing us to characterize the case of equality.

Tamanini, L., A Generalization of Costa's Entropy Power Inequality, <<IEEE TRANSACTIONS ON INFORMATION THEORY>>, 2022; 68 (7): 4224-4229. [doi:10.1109/TIT.2022.3159132] [https://hdl.handle.net/10807/232464]

A Generalization of Costa's Entropy Power Inequality

Tamanini, Luca
2022

Abstract

Aim of this short note is to study Shannon's entropy power along entropic interpolations, thus generalizing Costa's concavity theorem. We shall provide two proofs of independent interest: the former by G-calculus, hence applicable to more abstract frameworks; the latter with an explicit remainder term, reminiscent of Villani (IEEE Trans. Inf. Theory, 2006), allowing us to characterize the case of equality.
2022
Inglese
Tamanini, L., A Generalization of Costa's Entropy Power Inequality, <<IEEE TRANSACTIONS ON INFORMATION THEORY>>, 2022; 68 (7): 4224-4229. [doi:10.1109/TIT.2022.3159132] [https://hdl.handle.net/10807/232464]
File in questo prodotto:
File Dimensione Formato  
Entropic Costa (IEEE) Tamanini.pdf

accesso aperto

Licenza: Non specificato
Dimensione 705.27 kB
Formato Adobe PDF
705.27 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/232464
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 1
social impact