The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases( RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying plateletderived growth factor receptor beta ( PDGFR beta), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor(CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFR beta-ontaining endosomal compartment. PDGFRb/GM3-dependent virus internalization involved PDGFR beta phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRb by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-gamma. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFR beta signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.

Vrijens, P., Noppen, S., Boogaerts, T., Vanstreels, E., Ronca, R., Chiodelli, P., Laporte, M., Vanderlinden, E., Liekens, S., Stevaert, A., Naesens, L., Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway, <<JOURNAL OF GENERAL VIROLOGY>>, 2019; 100 (4): 583-601. [doi:10.1099/jgv.0.001235] [https://hdl.handle.net/10807/229435]

Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway

Chiodelli, Paola;
2019

Abstract

The possible resistance of influenza virus against existing antiviral drugs calls for new therapeutic concepts. One appealing strategy is to inhibit virus entry, in particular at the stage of internalization. This requires a better understanding of virus-host interactions during the entry process, including the role of receptor tyrosine kinases( RTKs). To search for cellular targets, we evaluated a panel of 276 protein kinase inhibitors in a multicycle antiviral assay in Madin-Darby canine kidney cells. The RTK inhibitor Ki8751 displayed robust anti-influenza A and B virus activity and was selected for mechanistic investigations. Ki8751 efficiently disrupted the endocytic process of influenza virus in different cell lines carrying plateletderived growth factor receptor beta ( PDGFR beta), an RTK that is known to act at GM3 ganglioside-positive lipid rafts. The more efficient virus entry in CHO-K1 cells compared to the wild-type ancestor(CHO-wt) cells indicated a positive effect of GM3, which is abundant in CHO-K1 but not in CHO-wt cells. Entering virus localized to GM3-positive lipid rafts and the PDGFR beta-ontaining endosomal compartment. PDGFRb/GM3-dependent virus internalization involved PDGFR beta phosphorylation, which was potently inhibited by Ki8751, and desialylation of activated PDGFRb by the viral neuraminidase. Virus uptake coincided with strong activation of the Raf/MEK/Erk cascade, but not of PI3K/Akt or phospholipase C-gamma. We conclude that influenza virus efficiently hijacks the GM3-enhanced PDGFR beta signalling pathway for cell penetration, providing an opportunity for host cell-targeting antiviral intervention.
2019
Inglese
Vrijens, P., Noppen, S., Boogaerts, T., Vanstreels, E., Ronca, R., Chiodelli, P., Laporte, M., Vanderlinden, E., Liekens, S., Stevaert, A., Naesens, L., Influenza virus entry via the GM3 ganglioside-mediated platelet-derived growth factor receptor β signalling pathway, <<JOURNAL OF GENERAL VIROLOGY>>, 2019; 100 (4): 583-601. [doi:10.1099/jgv.0.001235] [https://hdl.handle.net/10807/229435]
File in questo prodotto:
File Dimensione Formato  
583_vir001235_compressed.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.71 MB
Formato Adobe PDF
1.71 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/229435
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 32
social impact