We propose a novel procedure, built within a Generalized Method of Moments framework, which exploits unpaired observations (singletons) to increase the efficiency of longitudinal fixed effect estimates. The approach allows increasing estimation efficiency, while properly tackling the bias due to unobserved time-invariant characteristics. We assess its properties by means of Monte Carlo simulations, and apply it to a traditional Total Factor Productivity regression, showing efficiency gains of approximately 8–9 percent.

Bruno, R. L., Magazzini, L., Stampini, M., Exploiting information from singletons in panel data analysis: A GMM approach, <<ECONOMICS LETTERS>>, 2020; 186 (N/A): 108519-108522. [doi:10.1016/j.econlet.2019.07.004] [https://hdl.handle.net/10807/226668]

Exploiting information from singletons in panel data analysis: A GMM approach

Bruno, Randolph Luca
Primo
Membro del Collaboration Group
;
2020

Abstract

We propose a novel procedure, built within a Generalized Method of Moments framework, which exploits unpaired observations (singletons) to increase the efficiency of longitudinal fixed effect estimates. The approach allows increasing estimation efficiency, while properly tackling the bias due to unobserved time-invariant characteristics. We assess its properties by means of Monte Carlo simulations, and apply it to a traditional Total Factor Productivity regression, showing efficiency gains of approximately 8–9 percent.
2020
Inglese
Bruno, R. L., Magazzini, L., Stampini, M., Exploiting information from singletons in panel data analysis: A GMM approach, <<ECONOMICS LETTERS>>, 2020; 186 (N/A): 108519-108522. [doi:10.1016/j.econlet.2019.07.004] [https://hdl.handle.net/10807/226668]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/226668
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact