We describe a special class of quasi-equilibrium problems in metric spaces and proposea novel simple threshold descent method for solving these problems. Due tothe framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.

Bianchi, M., Konnov, I., Pini, R., On a threshold descent method for quasi-equilibria, <<OPTIMIZATION LETTERS>>, 2023; 2023 (N/A): N/A-N/A. [doi:10.1007/s11590-023-01978-x] [https://hdl.handle.net/10807/225687]

On a threshold descent method for quasi-equilibria

Bianchi, Monica;
2023

Abstract

We describe a special class of quasi-equilibrium problems in metric spaces and proposea novel simple threshold descent method for solving these problems. Due tothe framework, the convergence of the method cannot be established with the usual convexity or generalized convexity assumptions. Under mild conditions, the iterative procedure gives solutions of the quasi-equilibrium problem. We apply this method to scalar and vector generalized quasi-equilibrium problems and to some classes of relative optimization problems.
2023
Inglese
Bianchi, M., Konnov, I., Pini, R., On a threshold descent method for quasi-equilibria, <<OPTIMIZATION LETTERS>>, 2023; 2023 (N/A): N/A-N/A. [doi:10.1007/s11590-023-01978-x] [https://hdl.handle.net/10807/225687]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/225687
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact