Trimethyltin (TMT), an organotin compound considered a useful tool to obtain an experimental model of neurodegeneration, exhibits neurotoxicant effects selectively localised in the limbic system and especially in the hippocampus, which are different in the rat and in mice. In the rat hippocampus, we investigated the expression of aldehyde 4-hydroxynonenal, a major bioactive marker of membrane lipid peroxidation, heat shock protein (HSP) 110/105 family members, markers of oxidative stress, and the neuroinflammatory marker cyclooxygenase-2 after TMT-intoxication at various time points after treatment. Our data show that TMT-induced neurodegeneration in the rat hippocampus is associated specifically with oxidative stress and lipid peroxidation, but not with HSP expression, indicating species-specific differences in the neurotoxicity of TMT between rats and mice.
Corvino, V., Marchese, E., Zarkovic, N., Zarcovic, K., Cindric, M., Waeg, G., Michetti, F., Geloso, M. C., Distribution and time-course of 4-hydroxynonenal, heat shock protein 110/105 family members and cyclooxygenase-2 expression in the hippocampus of rat during trimethyltin-induced neurodegeneration, <<NEUROCHEMICAL RESEARCH>>, 2011; 2011 (36): 1490-1500 [http://hdl.handle.net/10807/2225]
Distribution and time-course of 4-hydroxynonenal, heat shock protein 110/105 family members and cyclooxygenase-2 expression in the hippocampus of rat during trimethyltin-induced neurodegeneration
Corvino, Valentina;Marchese, Elisa;Michetti, Fabrizio;Geloso, Maria Concetta
2011
Abstract
Trimethyltin (TMT), an organotin compound considered a useful tool to obtain an experimental model of neurodegeneration, exhibits neurotoxicant effects selectively localised in the limbic system and especially in the hippocampus, which are different in the rat and in mice. In the rat hippocampus, we investigated the expression of aldehyde 4-hydroxynonenal, a major bioactive marker of membrane lipid peroxidation, heat shock protein (HSP) 110/105 family members, markers of oxidative stress, and the neuroinflammatory marker cyclooxygenase-2 after TMT-intoxication at various time points after treatment. Our data show that TMT-induced neurodegeneration in the rat hippocampus is associated specifically with oxidative stress and lipid peroxidation, but not with HSP expression, indicating species-specific differences in the neurotoxicity of TMT between rats and mice.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.