An asymptotic analysis is developed, which guarantees that the equation εa(x)∂uε/∂t = ε divx(a(x)▽xuε) - ψ(uε)/2εa(x) in Rn × (0, T), approximates a flow by mean curvature with an error of order O(ε2). The dependence on space of the relaxation parameter εa(x) is crucial for the stability and accuracy of the finite element approximations based on a local mesh refinement strategy. Several numerical experiments simulate the mean curvature motion of various surfaces and confirm the reliability of the asymptotic analysis.

Paolini, M., Verdi, C., Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter, <<ASYMPTOTIC ANALYSIS>>, 1992; 5 (6): 553-574 [https://hdl.handle.net/10807/222064]

Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter

Paolini, Maurizio;
1992

Abstract

An asymptotic analysis is developed, which guarantees that the equation εa(x)∂uε/∂t = ε divx(a(x)▽xuε) - ψ(uε)/2εa(x) in Rn × (0, T), approximates a flow by mean curvature with an error of order O(ε2). The dependence on space of the relaxation parameter εa(x) is crucial for the stability and accuracy of the finite element approximations based on a local mesh refinement strategy. Several numerical experiments simulate the mean curvature motion of various surfaces and confirm the reliability of the asymptotic analysis.
1992
Inglese
Paolini, M., Verdi, C., Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter, <<ASYMPTOTIC ANALYSIS>>, 1992; 5 (6): 553-574 [https://hdl.handle.net/10807/222064]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/222064
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact