Background: Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individualized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accuracy when adding SNPs to a prediction model with only traditional risk factors. Methods: We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk prediction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with AUC improvement. Results: We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant trend in AUC improvement according to the number of SNPs (p for trend = 0.774), and no correlation between the number of SNPs and AUC improvement (p = 0.695). Pooled AUC improvement was 0.040 (95% CI: 0.035, 0.045), and the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved better AUC improvement with the incorporation of SNPs compared with those developed among individuals of European ancestry. Conclusions: Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further research is needed. Keywords: Colorectal cancer; Genetic risk score; Meta-analysis; Polygenic; Prediction models; Single nucleotide polymorphisms.

Sassano, M., Mariani, M., Quaranta, G., Pastorino, R., Boccia, S., Polygenic risk prediction models for colorectal cancer: a systematic review, <<BMC CANCER>>, 2022; 2022 (22): 1-21. [doi:10.1186/s12885-021-09143-2] [http://hdl.handle.net/10807/216065]

Polygenic risk prediction models for colorectal cancer: a systematic review

Sassano, M
Primo
;
Mariani, M
Secondo
;
Quaranta, G;Pastorino, R
Penultimo
;
Boccia, S
Ultimo
2022

Abstract

Background: Risk prediction models incorporating single nucleotide polymorphisms (SNPs) could lead to individualized prevention of colorectal cancer (CRC). However, the added value of incorporating SNPs into models with only traditional risk factors is still not clear. Hence, our primary aim was to summarize literature on risk prediction models including genetic variants for CRC, while our secondary aim was to evaluate the improvement of discriminatory accuracy when adding SNPs to a prediction model with only traditional risk factors. Methods: We conducted a systematic review on prediction models incorporating multiple SNPs for CRC risk prediction. We tested whether a significant trend in the increase of Area Under Curve (AUC) according to the number of SNPs could be observed, and estimated the correlation between AUC improvement and number of SNPs. We estimated pooled AUC improvement for SNP-enhanced models compared with non-SNP-enhanced models using random effects meta-analysis, and conducted meta-regression to investigate the association of specific factors with AUC improvement. Results: We included 33 studies, 78.79% using genetic risk scores to combine genetic data. We found no significant trend in AUC improvement according to the number of SNPs (p for trend = 0.774), and no correlation between the number of SNPs and AUC improvement (p = 0.695). Pooled AUC improvement was 0.040 (95% CI: 0.035, 0.045), and the number of cases in the study and the AUC of the starting model were inversely associated with AUC improvement obtained when adding SNPs to a prediction model. In addition, models constructed in Asian individuals achieved better AUC improvement with the incorporation of SNPs compared with those developed among individuals of European ancestry. Conclusions: Though not conclusive, our results provide insights on factors influencing discriminatory accuracy of SNP-enhanced models. Genetic variants might be useful to inform stratified CRC screening in the future, but further research is needed. Keywords: Colorectal cancer; Genetic risk score; Meta-analysis; Polygenic; Prediction models; Single nucleotide polymorphisms.
Inglese
Sassano, M., Mariani, M., Quaranta, G., Pastorino, R., Boccia, S., Polygenic risk prediction models for colorectal cancer: a systematic review, <<BMC CANCER>>, 2022; 2022 (22): 1-21. [doi:10.1186/s12885-021-09143-2] [http://hdl.handle.net/10807/216065]
File in questo prodotto:
File Dimensione Formato  
Sassano BNC Cancer 2022.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 1.7 MB
Formato Adobe PDF
1.7 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/216065
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact