Multiannual measurements of ozone (O3) fluxes were performed from 2012 to 2020 in a broadleaf deciduous forest of the Po Valley, Italy. Fluxes were measured with the eddy covariance technique on a 41-m high tower, 15 m above the forest canopy. Different partition methodologies, based on concomitant water and carbon dioxide measurements, were compared for the calculation of the stomatal and non-stomatal components of the O3 fluxes. Total O3 fluxes revealed a marked interannual variability that was mainly driven by the stomatal activity in summer. Therefore, those factors that influence stomatal conductance were responsible for the flux variability, with soil water content being the main physiological driver. Despite the variability of the total O3 fluxes, the annual mean of the stomatal fraction was similar in the different years, around 42% on a 24-h basis, with an average summer value of 52% and a maximum around 60% during the summer daylight hours. The non-stomatal deposition was mainly driven by air humidity, surface wetness, and chemical sinks such as reaction of O3 with nitric oxide. Wind speed, turbulence intensity, and surface temperature showed a negative relationship with the non-stomatal fraction, but this was probably the result of a temporal misalignment between the daily cycles of non-stomatal conductance and those of temperature, turbulence, and wind speed. During the 7 years of measurements, the forest experienced a phytotoxic O3 dose of 10.55 mmolO3 m−2, as annual average, with an estimated reduction of the forest growth rate around 3% yr−1 according to the dose–effect relationships of the United Nations Economic Commission for Europe for broadleaf deciduous forests. Besides their implication for the O3 risk assessment for vegetation, these long-term measurements could be useful to test the deposition models used to correctly assess the O3 budget in troposphere on a multiannual time span.

Gerosa, G. A., Marzuoli, R., Finco, A., Interannual variability of ozone fluxes in a broadleaf deciduous forest in Italy, <<ELEMENTA>>, 2022; (10): N/A-N/A. [doi:10.1525/elementa.2021.00105] [https://hdl.handle.net/10807/215670]

Interannual variability of ozone fluxes in a broadleaf deciduous forest in Italy

Gerosa, Giacomo Alessandro
Primo
;
Marzuoli, Riccardo
Secondo
;
Finco, Angelo
Ultimo
2022

Abstract

Multiannual measurements of ozone (O3) fluxes were performed from 2012 to 2020 in a broadleaf deciduous forest of the Po Valley, Italy. Fluxes were measured with the eddy covariance technique on a 41-m high tower, 15 m above the forest canopy. Different partition methodologies, based on concomitant water and carbon dioxide measurements, were compared for the calculation of the stomatal and non-stomatal components of the O3 fluxes. Total O3 fluxes revealed a marked interannual variability that was mainly driven by the stomatal activity in summer. Therefore, those factors that influence stomatal conductance were responsible for the flux variability, with soil water content being the main physiological driver. Despite the variability of the total O3 fluxes, the annual mean of the stomatal fraction was similar in the different years, around 42% on a 24-h basis, with an average summer value of 52% and a maximum around 60% during the summer daylight hours. The non-stomatal deposition was mainly driven by air humidity, surface wetness, and chemical sinks such as reaction of O3 with nitric oxide. Wind speed, turbulence intensity, and surface temperature showed a negative relationship with the non-stomatal fraction, but this was probably the result of a temporal misalignment between the daily cycles of non-stomatal conductance and those of temperature, turbulence, and wind speed. During the 7 years of measurements, the forest experienced a phytotoxic O3 dose of 10.55 mmolO3 m−2, as annual average, with an estimated reduction of the forest growth rate around 3% yr−1 according to the dose–effect relationships of the United Nations Economic Commission for Europe for broadleaf deciduous forests. Besides their implication for the O3 risk assessment for vegetation, these long-term measurements could be useful to test the deposition models used to correctly assess the O3 budget in troposphere on a multiannual time span.
2022
Inglese
Gerosa, G. A., Marzuoli, R., Finco, A., Interannual variability of ozone fluxes in a broadleaf deciduous forest in Italy, <<ELEMENTA>>, 2022; (10): N/A-N/A. [doi:10.1525/elementa.2021.00105] [https://hdl.handle.net/10807/215670]
File in questo prodotto:
File Dimensione Formato  
elementa.2021.00105.pdf

accesso aperto

Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.31 MB
Formato Adobe PDF
2.31 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/215670
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact