Machine learning (ML) is a rapidly rising research tool in biomedical sciences whose applications include segmentation, classification, disease detection, and outcome prediction. With respect to traditional statistical methods, ML algorithms have the potential to learn and improve their predictive performance when fed with large data sets without the need of being specifically programmed. In recent years, this technology has been increasingly applied for tackling clinical issues in intracranial aneurysm (IA) research. Several studies attempted to provide reliable models for enhanced aneurysm detection. Convolutional neural networks trained with variable degrees of human interaction on data from diverse imaging modalities showed high sensitivity in aneurysm detection tasks, also outperforming expert image analysis. Algorithms were also shown to differentiate ruptured from unruptured IAs, with however limited clinical relevance. For prediction of rupture and stability assessment, ML was preliminarily shown to achieve better performance compared to conventional statistical methods and existing risk scores. ML-based complication and functional outcome prediction in the event of SAH have been more extensively reported, in contrast with periprocedural outcome investigation in unruptured IA patients. ML has the potential to be a game changer in IA patient management. Currently clinical translation of experimental results is limited.

Stumpo, V., Staartjes, V. E., Esposito, G., Serra, C., Regli, L., Olivi, A., Sturiale, C. L., Machine Learning and Intracranial Aneurysms: From Detection to Outcome Prediction, <<ACTA NEUROCHIRURGICA>>, 2022; 134 (n.d): 319-331. [doi:10.1007/978-3-030-85292-4_36] [http://hdl.handle.net/10807/206710]

Machine Learning and Intracranial Aneurysms: From Detection to Outcome Prediction

Olivi, Alessandro;Sturiale, Carmelo Lucio
2022

Abstract

Machine learning (ML) is a rapidly rising research tool in biomedical sciences whose applications include segmentation, classification, disease detection, and outcome prediction. With respect to traditional statistical methods, ML algorithms have the potential to learn and improve their predictive performance when fed with large data sets without the need of being specifically programmed. In recent years, this technology has been increasingly applied for tackling clinical issues in intracranial aneurysm (IA) research. Several studies attempted to provide reliable models for enhanced aneurysm detection. Convolutional neural networks trained with variable degrees of human interaction on data from diverse imaging modalities showed high sensitivity in aneurysm detection tasks, also outperforming expert image analysis. Algorithms were also shown to differentiate ruptured from unruptured IAs, with however limited clinical relevance. For prediction of rupture and stability assessment, ML was preliminarily shown to achieve better performance compared to conventional statistical methods and existing risk scores. ML-based complication and functional outcome prediction in the event of SAH have been more extensively reported, in contrast with periprocedural outcome investigation in unruptured IA patients. ML has the potential to be a game changer in IA patient management. Currently clinical translation of experimental results is limited.
2022
Inglese
Stumpo, V., Staartjes, V. E., Esposito, G., Serra, C., Regli, L., Olivi, A., Sturiale, C. L., Machine Learning and Intracranial Aneurysms: From Detection to Outcome Prediction, <<ACTA NEUROCHIRURGICA>>, 2022; 134 (n.d): 319-331. [doi:10.1007/978-3-030-85292-4_36] [http://hdl.handle.net/10807/206710]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/206710
Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 9
  • ???jsp.display-item.citation.isi??? ND
social impact