We propose a method to test dependence or conditional dependence be- tween parts of the domain of functional data. The tests are based on permutation procedure that tests if suitable blocks of the covariance or precision matrix of ba- sis expansion coefficients are equal to zero. We show that the procedure is able to identify the true structure of conditional dependence.

Morvan, M., Pini, A., Giacofci, M., Monbet, V., Block testing in covariance and precision matrices for functional data analysis, Contributed paper, in Book of short papers SIS 2021, (Pisa, 21-25 June 2021), Pearson Italia, Milano 2021: 911-916 [http://hdl.handle.net/10807/203845]

Block testing in covariance and precision matrices for functional data analysis

Pini, Alessia
;
2021

Abstract

We propose a method to test dependence or conditional dependence be- tween parts of the domain of functional data. The tests are based on permutation procedure that tests if suitable blocks of the covariance or precision matrix of ba- sis expansion coefficients are equal to zero. We show that the procedure is able to identify the true structure of conditional dependence.
2021
Inglese
Book of short papers SIS 2021
SIS 2021
Pisa
Contributed paper
21-giu-2021
25-giu-2021
9788891927361
Pearson Italia
Morvan, M., Pini, A., Giacofci, M., Monbet, V., Block testing in covariance and precision matrices for functional data analysis, Contributed paper, in Book of short papers SIS 2021, (Pisa, 21-25 June 2021), Pearson Italia, Milano 2021: 911-916 [http://hdl.handle.net/10807/203845]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/203845
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact