Heterodimers of the retinoid X receptor (RXR) with the thyroid hormone receptor (TR) are considered to be nonpermissive. It is believed that within these complexes RXR acts as a "silent partner." We demonstrate here that a permissive heterodimer mediates stimulation of prolactin expression by the thyroid hormone T3 and by 9-cis retinoic acid (9-cis-RA). A response element located in the prolactin distal enhancer mediates transactivation by both ligands in pituitary cells, and RXR recruits coactivators when bound to this element as a heterodimer with TR. Furthermore, transcription by the RXR agonist can be obtained in CV-1 cells only after overexpression of coactivators, and overexpression of corepressors inhibits the response in pituitary cells. Thus, cell type-specific differences in coregulator recruitment can determine the cellular response to both ligands. Coactivator recruitment by 9-cis-RA requires the ligand-dependent transactivation domains (AF-2) of both heterodimeric partners. Interestingly, the presence of the RXR ligand can overcome the deleterious effect of the AF-2 mutation E401Q on association with coactivators and transactivation. These results demonstrate an unexpected role for RXR in TRsignaling and show that in particular cellular environments this receptor can act as a "nonsilent" partner of TR, allowing stimulation by RXR agonists.

Castillo, A. I., Sanchez-Martinez, R., Moreno, J. L., Martinez-Iglesias, O. A., Palacios, D., Aranda, A., A Permissive Retinoid X Receptor/Thyroid Hormone Receptor Heterodimer Allows Stimulation of Prolactin Gene Transcription by Thyroid Hormone and 9-cis-Retinoic Acid, <<MOLECULAR AND CELLULAR BIOLOGY>>, 2004; 24 (2): 502-513. [doi:10.1128/MCB.24.2.502-513.2004] [http://hdl.handle.net/10807/199482]

A Permissive Retinoid X Receptor/Thyroid Hormone Receptor Heterodimer Allows Stimulation of Prolactin Gene Transcription by Thyroid Hormone and 9-cis-Retinoic Acid

Palacios, D.;
2004

Abstract

Heterodimers of the retinoid X receptor (RXR) with the thyroid hormone receptor (TR) are considered to be nonpermissive. It is believed that within these complexes RXR acts as a "silent partner." We demonstrate here that a permissive heterodimer mediates stimulation of prolactin expression by the thyroid hormone T3 and by 9-cis retinoic acid (9-cis-RA). A response element located in the prolactin distal enhancer mediates transactivation by both ligands in pituitary cells, and RXR recruits coactivators when bound to this element as a heterodimer with TR. Furthermore, transcription by the RXR agonist can be obtained in CV-1 cells only after overexpression of coactivators, and overexpression of corepressors inhibits the response in pituitary cells. Thus, cell type-specific differences in coregulator recruitment can determine the cellular response to both ligands. Coactivator recruitment by 9-cis-RA requires the ligand-dependent transactivation domains (AF-2) of both heterodimeric partners. Interestingly, the presence of the RXR ligand can overcome the deleterious effect of the AF-2 mutation E401Q on association with coactivators and transactivation. These results demonstrate an unexpected role for RXR in TRsignaling and show that in particular cellular environments this receptor can act as a "nonsilent" partner of TR, allowing stimulation by RXR agonists.
Inglese
Castillo, A. I., Sanchez-Martinez, R., Moreno, J. L., Martinez-Iglesias, O. A., Palacios, D., Aranda, A., A Permissive Retinoid X Receptor/Thyroid Hormone Receptor Heterodimer Allows Stimulation of Prolactin Gene Transcription by Thyroid Hormone and 9-cis-Retinoic Acid, <<MOLECULAR AND CELLULAR BIOLOGY>>, 2004; 24 (2): 502-513. [doi:10.1128/MCB.24.2.502-513.2004] [http://hdl.handle.net/10807/199482]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/199482
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 65
  • ???jsp.display-item.citation.isi??? 56
social impact