The coupling of excitons with atomic vibrations plays a pivotal role on the nonequilibrium optical properties of layered semiconductors. However, how exciton-phonon coupling manifests in the time and energy domains is still an open debate between experiment and theory. By means of time-resolved broadband optical reflectivity combined with ab initio calculations of a bismuth tri-iodide single crystal, we set the spectral fingerprints for the optical detection of exciton-phonon coupling in layered semiconductors. Our joint experimental and theoretical effort allows us to unravel the impact of exciton-phonon coupling by microscopically relating the photoinduced coherent energy modulation of the excitonic resonance to coherent optical phonons. This enables us to track the extent of the photoinduced atomic displacement in real space. Our findings represent a step forward on the road to coherent manipulation of the excitonic properties on ultrafast timescales.
Mor, S., Gosetti, V., Molina-Sanchez, A., Sangalli, D., Achilli, S., Agekyan, V. F., Franceschini, P., Giannetti, C., Sangaletti, L. E., Pagliara, S., Photoinduced modulation of the excitonic resonance via coupling with coherent phonons in a layered semiconductor, <<PHYSICAL REVIEW RESEARCH>>, 2021; 3 (4): N/A-N/A. [doi:10.1103/PhysRevResearch.3.043175] [http://hdl.handle.net/10807/196722]
Photoinduced modulation of the excitonic resonance via coupling with coherent phonons in a layered semiconductor
Mor, Selene;Gosetti, Valentina;Achilli, Simona;Franceschini, Paolo;Giannetti, Claudio;Sangaletti, Luigi Ermenegildo;Pagliara, Stefania
2021
Abstract
The coupling of excitons with atomic vibrations plays a pivotal role on the nonequilibrium optical properties of layered semiconductors. However, how exciton-phonon coupling manifests in the time and energy domains is still an open debate between experiment and theory. By means of time-resolved broadband optical reflectivity combined with ab initio calculations of a bismuth tri-iodide single crystal, we set the spectral fingerprints for the optical detection of exciton-phonon coupling in layered semiconductors. Our joint experimental and theoretical effort allows us to unravel the impact of exciton-phonon coupling by microscopically relating the photoinduced coherent energy modulation of the excitonic resonance to coherent optical phonons. This enables us to track the extent of the photoinduced atomic displacement in real space. Our findings represent a step forward on the road to coherent manipulation of the excitonic properties on ultrafast timescales.File | Dimensione | Formato | |
---|---|---|---|
Mor PRR2021.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.47 MB
Formato
Adobe PDF
|
1.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.