Yondelis (ET-743) is a promising antitumor drug with hepatotoxic properties in animals and humans. Here the hypothesis was tested that dexamethasone can ameliorate manifestations of yondelis-induced hepatotoxicity in the female Wistar rat, which is the animal species with the highest sensitivity toward the adverse hepatic effect of yondelis. Hepatotoxicity was adjudged by measurement of plasma levels of alkaline phosphatase, aspartate aminotransferase, and bilirubin, and by liver histopathology. Yondelis (40 micro g/kg i.v.) alone caused a dramatic elevation of plasma alkaline phosphatase, aspartate aminotransferase, and bilirubin levels, and degeneration and patchy focal necrosis of bile duct epithelial cells. Pretreatment of rats with dexamethasone (5-20 mg/kg, p.o.) 24 h before yondelis ameliorated or abrogated the biochemical and histopathological manifestations of yondelis-induced liver changes. In contrast, when dexamethasone was administered simultaneously with yondelis, its toxicity was not reduced. Pretreatment with dexamethasone (10 mg/kg) also reversed the gene expression changes induced by yondelis in rat liver. However, dexamethasone pretreatment did not interfere with the antitumor efficacy of yondelis in rats bearing the 13762 mammary carcinoma or in four murine models. Dexamethasone (10 mg/kg) administered 24 h before yondelis decreased hepatic levels of yondelis dramatically compared with those obtained after administration of yondelis alone, whereas yondelis plasma levels after the drug combination were not markedly different from those in rats on yondelis alone. The results suggest that pretreatment with high-dose dexamethasone effectively protects rats against yondelis-mediated hepatic damage by decreasing hepatic exposure to yondelis, perhaps linked to induction of metabolism by cytochrome P450 enzymes. Pretreatment with high-dose dexamethasone should be investigated in patients who receive yondelis to ameliorate its unwanted effect on the liver.
Donald, S., Verschoyle, R., Greaves, P., Gant, T., Colombo, T., Zaffaroni, M., Frapolli, R., Zucchetti, M., D'Incalci, M., Meco, D., Riccardi, R., Lopez Lazaro, L., Jimeno, J., Gescher, A., Complete protection by high-dose dexamethasone against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the rat, <<CANCER RESEARCH>>, 2003; 63 (18): 5902-5908 [http://hdl.handle.net/10807/18897]
Complete protection by high-dose dexamethasone against the hepatotoxicity of the novel antitumor drug yondelis (ET-743) in the rat
Meco, Daniela;Riccardi, Riccardo;
2003
Abstract
Yondelis (ET-743) is a promising antitumor drug with hepatotoxic properties in animals and humans. Here the hypothesis was tested that dexamethasone can ameliorate manifestations of yondelis-induced hepatotoxicity in the female Wistar rat, which is the animal species with the highest sensitivity toward the adverse hepatic effect of yondelis. Hepatotoxicity was adjudged by measurement of plasma levels of alkaline phosphatase, aspartate aminotransferase, and bilirubin, and by liver histopathology. Yondelis (40 micro g/kg i.v.) alone caused a dramatic elevation of plasma alkaline phosphatase, aspartate aminotransferase, and bilirubin levels, and degeneration and patchy focal necrosis of bile duct epithelial cells. Pretreatment of rats with dexamethasone (5-20 mg/kg, p.o.) 24 h before yondelis ameliorated or abrogated the biochemical and histopathological manifestations of yondelis-induced liver changes. In contrast, when dexamethasone was administered simultaneously with yondelis, its toxicity was not reduced. Pretreatment with dexamethasone (10 mg/kg) also reversed the gene expression changes induced by yondelis in rat liver. However, dexamethasone pretreatment did not interfere with the antitumor efficacy of yondelis in rats bearing the 13762 mammary carcinoma or in four murine models. Dexamethasone (10 mg/kg) administered 24 h before yondelis decreased hepatic levels of yondelis dramatically compared with those obtained after administration of yondelis alone, whereas yondelis plasma levels after the drug combination were not markedly different from those in rats on yondelis alone. The results suggest that pretreatment with high-dose dexamethasone effectively protects rats against yondelis-mediated hepatic damage by decreasing hepatic exposure to yondelis, perhaps linked to induction of metabolism by cytochrome P450 enzymes. Pretreatment with high-dose dexamethasone should be investigated in patients who receive yondelis to ameliorate its unwanted effect on the liver.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.