Glioblastoma (GBM) is the most aggressive and malignant form of primary brain cancer, characterized by an overall survival time ranging from 12 to 18 months. Despite the progress in the clinical treatment and the growing number of experimental data aimed at investigating the molecular bases of GBM development, the disease remains characterized by a poor prognosis. Recent studies have proposed the existence of a population of GBM cancer stem cells (CSCs) endowed with self-renewal capability and a high tumorigenic potential that are believed to be responsible for the resistance against common chemotherapy and radiotherapy treatments. Reelin is a large secreted extracellular matrix glycoprotein, which contributes to positioning, migration, and laminar organization of several central nervous system structures during brain development. Mutations of the reelin gene have been linked to disorganization of brain structures during development and behavioral anomalies. In this study, we explored the expression of reelin in GBM and its related peritumoral tissue and performed the same analysis in CSCs isolated from both GBM (GCSCs) and peritumoral tissue (PCSCs) of human patients. Our findings reveal (i) the higher expression of reelin in GBM compared to the peritumoral tissue by immunohistochemical analysis, (ii) the mRNA expression of both reelin and its adaptor molecule Dab1 in either CSC subtypes, although at a different extent; and (iii) the contribution of CSCs-derived reelin in the migration of human primary GBM cell line U87MG. Taken together, our data indicate that the expression of reelin in GBM may represent a potential contribution to the regulation of GBM cancer stem cells behavior, further stimulating the interest on the reelin pathway as a potential target for GBM treatment.
Biamonte, F., Sica, G., Filippini, A., D'Alessio, A., Evidence of Reelin Signaling in GBM and Its Derived Cancer Stem Cells, <<BRAIN SCIENCES>>, 2021; (11(6)): 745-755. [doi:10.3390/brainsci11060745] [http://hdl.handle.net/10807/185893]
Evidence of Reelin Signaling in GBM and Its Derived Cancer Stem Cells
Biamonte, FilippoPrimo
Investigation
;Sica, GigliolaSecondo
Writing – Review & Editing
;D'Alessio, Alessio
Ultimo
Conceptualization
2021
Abstract
Glioblastoma (GBM) is the most aggressive and malignant form of primary brain cancer, characterized by an overall survival time ranging from 12 to 18 months. Despite the progress in the clinical treatment and the growing number of experimental data aimed at investigating the molecular bases of GBM development, the disease remains characterized by a poor prognosis. Recent studies have proposed the existence of a population of GBM cancer stem cells (CSCs) endowed with self-renewal capability and a high tumorigenic potential that are believed to be responsible for the resistance against common chemotherapy and radiotherapy treatments. Reelin is a large secreted extracellular matrix glycoprotein, which contributes to positioning, migration, and laminar organization of several central nervous system structures during brain development. Mutations of the reelin gene have been linked to disorganization of brain structures during development and behavioral anomalies. In this study, we explored the expression of reelin in GBM and its related peritumoral tissue and performed the same analysis in CSCs isolated from both GBM (GCSCs) and peritumoral tissue (PCSCs) of human patients. Our findings reveal (i) the higher expression of reelin in GBM compared to the peritumoral tissue by immunohistochemical analysis, (ii) the mRNA expression of both reelin and its adaptor molecule Dab1 in either CSC subtypes, although at a different extent; and (iii) the contribution of CSCs-derived reelin in the migration of human primary GBM cell line U87MG. Taken together, our data indicate that the expression of reelin in GBM may represent a potential contribution to the regulation of GBM cancer stem cells behavior, further stimulating the interest on the reelin pathway as a potential target for GBM treatment.File | Dimensione | Formato | |
---|---|---|---|
2021 - Evidence of Reelin Signaling in GBM and Its Derived Cancer Stem Cells.pdf
accesso aperto
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.89 MB
Formato
Adobe PDF
|
1.89 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.