We assume that multivariate observational data are generated from a distribution whose conditional independencies are encoded in a Directed Acyclic Graph (DAG). For any given DAG, the causal effect of a variable onto another one can be evaluated through intervention calculus. A DAG is typically not identifiable from observational data alone. However, its Markov equivalence class (a collection of DAGs) can be estimated from the data. As a consequence, for the same intervention a set of causal effects, one for each DAG in the equivalence class, can be evaluated. In this paper, we propose a fully Bayesian methodology to make inference on the causal effects of any intervention in the system. Main features of our method are: (a) both uncertainty on the equivalence class and the causal effects are jointly modeled; (b) priors on the parameters of the modified Cholesky decomposition of the precision matrices across all DAG models are constructively assigned starting from a unique prior on the complete (unrestricted) DAG; (c) an efficient algorithm to sample from the posterior distribution on graph space is adopted; (d) an objective Bayes approach, requiring virtually no user specification, is used throughout. We demonstrate the merits of our methodology in simulation studies, wherein comparisons with current state-of-the-art procedures turn out to be highly satisfactory. Finally we examine a real data set of gene expressions for Arabidopsis thaliana.

Castelletti, F., Consonni, G., Bayesian inference of causal effects from observational data in Gaussian graphical models, <<BIOMETRICS>>, 2021; 77 (1): 136-149. [doi:10.1111/biom.13281] [http://hdl.handle.net/10807/182976]

Bayesian inference of causal effects from observational data in Gaussian graphical models

Castelletti, Federico
;
Consonni, Guido
2021

Abstract

We assume that multivariate observational data are generated from a distribution whose conditional independencies are encoded in a Directed Acyclic Graph (DAG). For any given DAG, the causal effect of a variable onto another one can be evaluated through intervention calculus. A DAG is typically not identifiable from observational data alone. However, its Markov equivalence class (a collection of DAGs) can be estimated from the data. As a consequence, for the same intervention a set of causal effects, one for each DAG in the equivalence class, can be evaluated. In this paper, we propose a fully Bayesian methodology to make inference on the causal effects of any intervention in the system. Main features of our method are: (a) both uncertainty on the equivalence class and the causal effects are jointly modeled; (b) priors on the parameters of the modified Cholesky decomposition of the precision matrices across all DAG models are constructively assigned starting from a unique prior on the complete (unrestricted) DAG; (c) an efficient algorithm to sample from the posterior distribution on graph space is adopted; (d) an objective Bayes approach, requiring virtually no user specification, is used throughout. We demonstrate the merits of our methodology in simulation studies, wherein comparisons with current state-of-the-art procedures turn out to be highly satisfactory. Finally we examine a real data set of gene expressions for Arabidopsis thaliana.
2021
Inglese
Castelletti, F., Consonni, G., Bayesian inference of causal effects from observational data in Gaussian graphical models, <<BIOMETRICS>>, 2021; 77 (1): 136-149. [doi:10.1111/biom.13281] [http://hdl.handle.net/10807/182976]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/182976
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 10
social impact