This paper is concerned with variational methods applied to functionals of the calculus of variations in a multi-dimensional case. We prove the existence of multiple critical points for a symmetric functional whose principal part is not subjected to any upper growth condition. For this purpose, nonsmooth variational methods are applied.

Degiovanni, M., Marzocchi, M., Multiple critical points for symmetric functionals without upper growth condition on the principal part, <<SYMMETRY>>, 2021; 13 (5): 1-21. [doi:10.3390/sym13050898] [http://hdl.handle.net/10807/182901]

Multiple critical points for symmetric functionals without upper growth condition on the principal part

Degiovanni, Marco
Primo
;
Marzocchi, Marco
Secondo
2021

Abstract

This paper is concerned with variational methods applied to functionals of the calculus of variations in a multi-dimensional case. We prove the existence of multiple critical points for a symmetric functional whose principal part is not subjected to any upper growth condition. For this purpose, nonsmooth variational methods are applied.
2021
Inglese
Degiovanni, M., Marzocchi, M., Multiple critical points for symmetric functionals without upper growth condition on the principal part, <<SYMMETRY>>, 2021; 13 (5): 1-21. [doi:10.3390/sym13050898] [http://hdl.handle.net/10807/182901]
File in questo prodotto:
File Dimensione Formato  
degiovanni_marzocchi2021.pdf

accesso aperto

Descrizione: full text
Tipologia file ?: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 284.91 kB
Formato Adobe PDF
284.91 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/182901
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact