This paper is concerned with variational methods applied to functionals of the calculus of variations in a multi-dimensional case. We prove the existence of multiple critical points for a symmetric functional whose principal part is not subjected to any upper growth condition. For this purpose, nonsmooth variational methods are applied.
Degiovanni, M., Marzocchi, M., Multiple critical points for symmetric functionals without upper growth condition on the principal part, <<SYMMETRY>>, 2021; 13 (5): 1-21. [doi:10.3390/sym13050898] [http://hdl.handle.net/10807/182901]
Multiple critical points for symmetric functionals without upper growth condition on the principal part
Degiovanni, Marco
Primo
;Marzocchi, MarcoSecondo
2021
Abstract
This paper is concerned with variational methods applied to functionals of the calculus of variations in a multi-dimensional case. We prove the existence of multiple critical points for a symmetric functional whose principal part is not subjected to any upper growth condition. For this purpose, nonsmooth variational methods are applied.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
degiovanni_marzocchi2021.pdf
accesso aperto
Descrizione: full text
Tipologia file ?:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
284.91 kB
Formato
Adobe PDF
|
284.91 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.