The synthesis and deposition of seed storage proteins in maize are affected by several dominant and recessive mutants. The effect of three independent mutations, floury-2 (fl2), Defective endosperm-B30 (De-B30), and Mucronate (Mc), that reduce zein level in the endosperm were investigated. These mutations also control the level of b-70, a polypeptide bound to protein bodies, which is separable into the two isoforms b-70I and b-70II by two-dimensional gel electrophoresis. Both isoforms are overexpressed 10-fold in fl2; however, only b-70I is present in De-B30 and Mc, which contain an amount of total b-70 isoforms fivefold higher than in the wild type. Both b-70I and b-70II resemble heat shock protein (HSP70) in that they bind ATP, cross-react with anti-HSP antibodies, and have N-terminal sequence homology to HSP70. All maize protein body-located b-70 characteristics are typical of those of chaperone-like HSPs. A third protein, b-70III, similar in size to but slightly more acidic than b-70I and b-70II, also binds ATP and reacts with the same antibody, providing evidence for the presence in endosperm extracts of a cytosolic chaperone-like protein. The level of b-70III was not altered by the mutations studied. The results suggested that the repression effect of the three mutations on zein accumulation may be mediated by the alteration of a zein transport or zein assembly process involving b-70I and b-70II.
Marocco, A., Santucci, A., Cerioli, S., Motto, M., Difonzo, N., Thompson, R., Salamini, F., THREE HIGH-LYSINE MUTATIONS CONTROL THE LEVEL OF ATP-BINDING HSP70-LIKE PROTEINS IN THE MAIZE ENDOSPERM, <<PLANT CELL>>, 1991; 3 (5): 507-515 [http://hdl.handle.net/10807/180879]
THREE HIGH-LYSINE MUTATIONS CONTROL THE LEVEL OF ATP-BINDING HSP70-LIKE PROTEINS IN THE MAIZE ENDOSPERM
Marocco, A;
1991
Abstract
The synthesis and deposition of seed storage proteins in maize are affected by several dominant and recessive mutants. The effect of three independent mutations, floury-2 (fl2), Defective endosperm-B30 (De-B30), and Mucronate (Mc), that reduce zein level in the endosperm were investigated. These mutations also control the level of b-70, a polypeptide bound to protein bodies, which is separable into the two isoforms b-70I and b-70II by two-dimensional gel electrophoresis. Both isoforms are overexpressed 10-fold in fl2; however, only b-70I is present in De-B30 and Mc, which contain an amount of total b-70 isoforms fivefold higher than in the wild type. Both b-70I and b-70II resemble heat shock protein (HSP70) in that they bind ATP, cross-react with anti-HSP antibodies, and have N-terminal sequence homology to HSP70. All maize protein body-located b-70 characteristics are typical of those of chaperone-like HSPs. A third protein, b-70III, similar in size to but slightly more acidic than b-70I and b-70II, also binds ATP and reacts with the same antibody, providing evidence for the presence in endosperm extracts of a cytosolic chaperone-like protein. The level of b-70III was not altered by the mutations studied. The results suggested that the repression effect of the three mutations on zein accumulation may be mediated by the alteration of a zein transport or zein assembly process involving b-70I and b-70II.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.