Resveratrol, an important phytoalexine found in many plants, has been shown to be significantly effective in the treatment of several pathological conditions such as cancer, coronary heart disease and osteoarthritis. This study focuses on the effects of this drug on human red blood cells. In particular, we have examined the influence of resveratrol on Band 3, the anion exchanger protein, and hemoglobin as a function of the oxygenation-deoxygenation cycle. Moreover, special attention has been given to the metabolic changes imposed by caspase 3 activation. Resveratrol has proved to lower superoxide production, thereby decreasing heme-iron oxidation and saving the reducing power required for met-hemoglobin reduction. Oxygen binding experiments showed that resveratrol interacts with hemoglobin, shifting the T T R conformational transition towards the higher-affinity R state. This might contribute to altering the metabolic balance of the cell through an intensification of the pentose phosphate pathway. Moreover, at high oxygenation levels of the erythrocytic hemoglobin, resveratrol induces a significant activation of caspase 3, the action of which on Band 3 has a strong impact on cellular metabolism and anion transport
Galtieri, A., Tellone, E., Ficarra, S., Russo, A., Bellocco, E., Barreca, D., Scatena, R., Lagana, G., Leuzzi, U., Giardina, B., Resveratrol treatment induces redox stress in red blood cells: a possible role of caspase 3 in metabolism and anion transport, <<BIOLOGICAL CHEMISTRY>>, 2010; 391 (9): 1057-1065. [doi:10.1515/BC.2010.100] [http://hdl.handle.net/10807/17459]
Resveratrol treatment induces redox stress in red blood cells: a possible role of caspase 3 in metabolism and anion transport
Scatena, Roberto;Giardina, Bruno
2010
Abstract
Resveratrol, an important phytoalexine found in many plants, has been shown to be significantly effective in the treatment of several pathological conditions such as cancer, coronary heart disease and osteoarthritis. This study focuses on the effects of this drug on human red blood cells. In particular, we have examined the influence of resveratrol on Band 3, the anion exchanger protein, and hemoglobin as a function of the oxygenation-deoxygenation cycle. Moreover, special attention has been given to the metabolic changes imposed by caspase 3 activation. Resveratrol has proved to lower superoxide production, thereby decreasing heme-iron oxidation and saving the reducing power required for met-hemoglobin reduction. Oxygen binding experiments showed that resveratrol interacts with hemoglobin, shifting the T T R conformational transition towards the higher-affinity R state. This might contribute to altering the metabolic balance of the cell through an intensification of the pentose phosphate pathway. Moreover, at high oxygenation levels of the erythrocytic hemoglobin, resveratrol induces a significant activation of caspase 3, the action of which on Band 3 has a strong impact on cellular metabolism and anion transportI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.