The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.

Borrelli, W., Carlone, R., Tentarelli, L., On the nonlinear Dirac equation on noncompact metric graphs, <<JOURNAL OF DIFFERENTIAL EQUATIONS>>, 2021; 278 (278): 326-357. [doi:10.1016/j.jde.2021.01.005] [http://hdl.handle.net/10807/171311]

On the nonlinear Dirac equation on noncompact metric graphs

Borrelli, William;
2021

Abstract

The paper discusses the Nonlinear Dirac Equation with Kerr-type nonlinearity (i.e., |ψ|p−2ψ) on noncompact metric graphs with a finite number of edges, in the case of Kirchhoff-type vertex conditions. Precisely, we prove local well-posedness for the associated Cauchy problem in the operator domain and, for infinite N-star graphs, the existence of standing waves bifurcating from the trivial solution at ω=mc2, for any p>2. In the Appendix we also discuss the nonrelativistic limit of the Dirac-Kirchhoff operator.
2021
Inglese
Borrelli, W., Carlone, R., Tentarelli, L., On the nonlinear Dirac equation on noncompact metric graphs, <<JOURNAL OF DIFFERENTIAL EQUATIONS>>, 2021; 278 (278): 326-357. [doi:10.1016/j.jde.2021.01.005] [http://hdl.handle.net/10807/171311]
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/10807/171311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 16
  • ???jsp.display-item.citation.isi??? 14
social impact